Аминокислоты в составе днк: виды и функции днк и аминокислот

Наследственные болезни

Генетический код это очень многофункциональная и противоречивая структура. С одной стороны он должен хранить информацию в неизменном эталонном виде, и эта функция проявляется возможностью ДНК восстанавливать искусственные повреждения в следующем поколении. С другой же стороны, геном может быть либо поврежден, либо измениться сам, что называют мутацией.

Мутации естественное свойство генов, и последствия этих мутация бывают, как отрицательные, так и положительные. Хоть мутации и называют поломками, но это определение спорно. Некоторые мутации в чём-то ослабляют организм – именно эти мутации и ищут во время тестирования на непереносимость пищевых продуктов.

Такие мутации создают повышенные риски возникновения, какого либо заболевания при соблюдении некоторых факторов. Соответственно, если исключить эти факторы из своей жизни, то с ними будут исключены и вероятности возникновения заболевания.

Что нужно для анализа ДНК?

Анализ ДНК стал популярным не только в медицине, но и в криминалистике, позволяя доказать участие подозреваемого в преступлении. Сегодня же все чаще такое исследование упоминают на скандальных ток-шоу, где выясняют отцовство. Сравнение ДНК ребенка и его потенциального родителя практически на 100% дает ответ о возможном родстве. При этом для анализа не требуется сложный забор биоматериала. ДНК содержится практически во всех живых клетках: в слюне, крови, сперме, эпителии, ушной сере. Но чтобы получить достоверный результат, лучше сдавать для анализа кровь из вены непосредственно в лаборатории. Сам анализ проводится в несколько этапов и требует применения технологичного оборудования и специальных реактивов. Именно поэтому тест на ДНК проводят в крупных клиниках в больших городах, а вот забор биоматериала (кусочек ногтя, ватная палочка в пробирке, следы слюны) можно осуществить на месте, а потом отправить почтой. И хотя такой тест и не будет иметь юридической силы, результат окажется довольно точным.

В ходе чтения молекулы ее сперва выделяют, потом многократно копируют и нарезают на кусочки для анализа. Азотистые основания подкрашивают специальным светящимся красителем, который распознается при лазерном просвечивании. Методов анализа ДНК разработано уже несколько, они постоянно улучшаются за счет модернизации приборов и улучшения компьютерных программ. Это позволяет постепенно снижать стоимость такого анализа.

Наша ДНК – настоящий кладезь информации и, возможно, та самая волшебная палочка, которая позволит в будущем нам как минимум бороться с наследственными заболеваниями и, как максимум, модернизировать свое тело. И если бессмертие – спорный вопрос, которому природа противится, то в продлении нашей жизни и улучшении ее качества изучение ДНК может помочь.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Основные концепции

Слева химическая структура ДНК, показывающая спаривание оснований. На этом изображении дуплекса ДНК справа отсутствует информация о трехмерной структуре молекулы.

Химическая структура ДНК недостаточна для понимания сложности трехмерных структур ДНК. Напротив, анимированные молекулярные модели позволяют визуально исследовать трехмерную (3D) структуру ДНК. Показанная модель ДНК (крайняя справа) заполняет пространство, или CPK, модель двойной спирали ДНК. Анимированные молекулярные модели, такие как проволочный или скелетный тип, показанные в верхней части этой статьи, позволяют визуально исследовать трехмерную (3D) структуру ДНК. Другой тип модели ДНК — это модель заполнения пространства, или CPK.

Динамика водородных связей и протонный обмен сильно различаются на много порядков между двумя системами полностью гидратированной ДНК и молекул воды во льду. Таким образом, динамика ДНК сложна, включая наносекундные и несколько десятков пикосекундных временных масштабов, тогда как динамика жидкого льда находится в пикосекундной временной шкале, а динамика протонного обмена во льду — в миллисекундной временной шкале. Скорости обмена протонов в ДНК и прикрепленных белках могут варьироваться от пикосекунды до наносекунды, минут или лет, в зависимости от точного местоположения протонов, обменявшихся на большие биополимеры.

Простой гармонический осциллятор «вибрация» — это только упрощенное динамическое представление продольных колебаний переплетенных спиралей ДНК, которые, как было установлено, ангармонический а не гармонической, как это часто предполагается в квантовой динамическое моделирование ДНК.

Структура ДНК

Структура ДНК показывает разнообразие форм, как двухцепочечных, так и одноцепочечных. Механические свойства ДНК, которые напрямую связаны с ее структурой, представляют серьезную проблему для клетки. Каждый процесс, который связывает или читает ДНК может использовать или изменять механические свойства ДНК для распознавания, упаковки и модификации. Крайняя длина (a хромосома может содержать цепь ДНК длиной 10 см), относительная жесткость и спиральная структура ДНК привели к эволюция из гистоны и из ферменты Такие как топоизомеразы и геликасы управлять ДНК клетки. Свойства ДНК тесно связаны с ее молекулярной структурой и последовательностью, особенно со слабостью водородных связей и электронных взаимодействий, которые удерживают цепи ДНК вместе, по сравнению с силой связей внутри каждой цепи.

Экспериментальные методы, позволяющие напрямую измерить механические свойства ДНК, относительно новы, и визуализация с высоким разрешением в растворе часто затруднена. Тем не менее, ученые обнаружили большое количество данных о механических свойствах этого полимера, и влияние механических свойств ДНК на клеточные процессы является предметом активных текущих исследований.

ДНК, обнаруженная во многих клетках, может иметь макроскопическую длину: несколько сантиметров для каждой хромосомы человека. Следовательно, клетки должны уплотняться или упаковка ДНК несет это в себе. В эукариоты это осуществляется катушкой белки названный гистоны, вокруг которого наматывается ДНК. Дальнейшее уплотнение этого ДНК-белкового комплекса дает хорошо известный митотический эукариотический хромосомы.

В конце 1970-х гг. неспиральные модели структуры ДНК были кратко рассмотрены как потенциальное решение проблем в Репликация ДНК в плазмиды и хроматин. Однако модели были отложены в пользу модели с двойной спиралью из-за последующих экспериментальных достижений, таких как Рентгеновская кристаллография дуплексов ДНК, а позже ядерная частица нуклеосомы, и открытие топоизомеразы. Такие модели, отличные от двойной спирали, в настоящее время не принимаются основным научным сообществом.

История

Открытие дезоксирибонуклеиновой кислоты произошло в 1869 году. И принадлежит открытие Иоганну Фридриху Мишеру. Он был биологом из Швейцарии и занимался изучением гноя. По большому счёту открытие можно назвать случайным, и сам Мишер не понял, что именно он открыл. Он назвал своё открытие нуклеином. А позже нуклеиновой кислотой, когда у неё обнаружились кислотные свойства.

Назначение этой кислоты было загадочно и неизвестно, хотя некоторые учёные уже поднимали вопрос о наследственности и существовании механизмов наследования. Современное представление о том из чего состоит цепь ДНК, было сформировано Д. Уотсоном и Ф. Криком в 1953 году. Несколько ранее, в середине тридцатых годов советские ученые А.Р. Кезеля и А.Н. Белозерский доказали, что ДНК встречается у всех живых видов. До их работы считалось, что эта молекула присутствует только в организме животных видов, а в растениях присутствует только РНК.

Тот факт, что дезоксирибонуклеиновая кислота является механизмом сохранения наследственной информации, был открыт только в 1944 году группой исследователей из Освальда. Так, совокупными усильями разных учёных мира была приоткрыта тайна эволюционного процесса и механизмов в его основе.

От белка к ДНК

На тот момент времени нуклеиновые кислоты представлялись странным материалом в ядре клетки. Для чего нужны эти образования, не знали, и тем более не искали доказательства генетической роли нуклеиновых кислот. Уже были открыты белки, состоящие из аминокислот и имеющие более сложную химическую структуру. Именно белки считали носителями наследственной информации.

В материале, который несет наследственную информацию, первым усомнился английский бактериолог Ф. Гриффит в 1928 году. И хотя он не смог представить убедительных доказательств генетической роли ДНК, его опыты заслуживают внимания.

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь – это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула – это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура – это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин – это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Немного истории

Швейцарский биолог Ф. Мишер в 1869 году увидел в ядрах клеток гноя (лейкоцитах) цепочки, которые назвал нуклеиновыми кислотами.

Немец А. Кассель как биохимик вычислил их состав: сахар, фосфорная кислота и пять разновидностей азотистых оснований. Он же в 1891 году доказал, что нуклеиновых кислот две – ДНК и РНК. В период от этих открытий до 1953 года велись исследования химического состава и структурной организации нуклеиновых кислот. Известные фамилии этого периода – Ф. Левен, А. Тодд, Э. Чаргафф. Опыты, начатые Ф. Гриффитом (1928) и продолженные О. Эвери, К. МакЛеодом и М. МакКарти (1944), представили доказательства роли ДНК в передаче генетической информации, о чем подробнее позже. В 1953 году американцы Дж. Уотсон и Ф.Крик предложили известную даже школьнику модель структуры ДНК в виде двойной закрученной спирали. Все, молекулярная биология родилась!

Важность

Давняя постоянная динамическая проблема заключается в том, как «самовоспроизведение» ДНК происходит в живых клетках, что должно включать временное разворачивание сверхспиральных волокон ДНК. Хотя ДНК состоит из относительно жестких, очень больших удлиненных молекул биополимера, называемых волокна или цепочки (состоящие из повторяющихся нуклеотид единицы четырех основных типов, присоединенные к дезоксирибозной и фосфатной группам), его молекулярная структура in vivo претерпевает динамические изменения конфигурации, в которых участвуют динамически присоединенные молекулы и ионы воды. Суперспирализация, упаковка гистонами в хромосомных структурах и другие подобные супрамолекулярные аспекты также включают in vivo Топология ДНК который является даже более сложным, чем молекулярная геометрия ДНК, что делает молекулярное моделирование ДНК особенно сложной проблемой как для молекулярных биологов, так и для биотехнологов. Подобно другим большим молекулам и биополимерам, ДНК часто существует в нескольких стабильных геометриях (т. Е. Проявляет конформационная изомерия) и конфигурационные, квантовые состояния, близкие друг к другу по энергии на поверхности потенциальной энергии молекулы ДНК.

Такую изменяющуюся молекулярную геометрию также можно вычислить, по крайней мере в принципе, с помощью ab initio квантовая химия методы, которые могут обеспечить высокую точность для малых молекул, хотя заявления о том, что приемлемая точность может быть также достигнута для полинуклеотидов и конформаций ДНК, были недавно сделаны на основе колебательный круговой дихроизм (VCD) спектральные данные. Такие квантовые геометрии определяют важный класс ab initio молекулярные модели ДНК, исследования которых только начинаются, особенно связанные с результатами, полученными с помощью VCD в растворах. Более подробные сравнения с такими ab initio квантовые вычисления, в принципе, можно получить с помощью спектроскопии 2D-FT ЯМР и релаксационных исследований растворов полинуклеотидов или специально меченой ДНК, например, дейтериевыми метками.

В интересном повороте ролей было предложено использовать молекулу ДНК для квантовые вычисления через ДНК. И наноструктуры ДНК, и ДНК-вычисления биочипы были построены.

Решение задач по расшифровке генетического кода

В молекулярной биологии широко используется таблица генетического кода. Ее применяют для определения последовательности аминокислот в белке.

Используя таблицу для расшифровки генетического кода, следует вспомнить сокращенные названия аминокислот, которые нам понадобятся при решении задач.

Рассмотри алгоритм действий при решении задач на определение генетического кода.

1. Разделим участок молекулы ДНК на отдельные триплеты: ААГ – ЦТТ – ТГЦ – ЦАГ.

2. Первый триплет начинается с аденина А ищем его в первом горизонтальном столбце. Учитываем, что нуклеотиды ДНК расположены в таблице генетического кода в скобках. Второе основание тоже аденинА расположен во втором горизонтальном столбце. Третье основание – гуанин Г, расположен в последнем столбце таблицы генетического кода. На пересечении столбцов мы находим необходимую аминокислоту – Фен, используя таблицу сокращений аминокислот, узнаем, что это фенилаланин.

3. Таким же способом определяем аминокислоты ещё для трех триплетов.

В итоге получаем для триплета ЦТТ – глутаминовая кислота, ТГЦ кодирует треонин, а ЦАГ – валин. Тогда у нас получилась следующая последовательность аминокислот: Фен – Глу – Тре – Вал. Соответственно, из данного отрезка молекулы ДНК образуется белок, состоящий из полученной последовательности аминокислот. Биосинтез белка сложный, многоступенчатый процесс, который рассмотрим в следующем пункте.

Паракристаллические решетчатые модели структур B-ДНК

Кремнеземное стекло — еще один пример материала, который организован в паракристаллическую решетку.

Паракристаллическая решетка или paracrystal, представляет собой молекулярную или атомная решетку со значительными количествами (например, больше , чем несколько процентов) частичного разупорядочения молекулярных механизмов. Предельными случаями паракристаллической модели являются наноструктуры , такие как стекла , жидкости и т. Д., Которые могут обладать только локальным упорядочением и не иметь глобального порядка. На следующем рисунке показан простой пример паракристаллической решетки кварцевого стекла:

Жидкие кристаллы также имеют паракристаллическую, а не кристаллическую структуру.

Высокогидратированная B-ДНК встречается в живых клетках в таком паракристаллическом состоянии, которое является динамичным, несмотря на относительно жесткую двойную спираль ДНК, стабилизированную параллельными водородными связями между парами нуклеотидных оснований в двух комплементарных спиральных цепях ДНК (см. Рисунки). ). Для простоты в большинстве молекулярных моделей ДНК не учитываются как вода, так и ионы, динамически связанные с B-ДНК, и поэтому они менее полезны для понимания динамического поведения B-ДНК in vivo . Таким образом, физико-математический анализ рентгеновских и спектроскопических данных для паракристаллической B-ДНК намного сложнее, чем анализ рентгеновских дифрактограмм кристаллической A-ДНК. Модель паракристалла также важна для технологических приложений ДНК, таких как нанотехнология ДНК . В настоящее время также разрабатываются новые методы, сочетающие дифракцию рентгеновских лучей ДНК с рентгеновской микроскопией гидратированных живых клеток.

Экспериментальные доказательства роли ДНК в передаче информации

Практически то же самое, что проделал Гриффит, только без бедных мышей, сделали в 1944 году О. Т. Эвери, К. М. МакЛеод и М. МакКарти. В Рокфеллеровском институте медицинских исследований в Нью-Йорке они получили in vitro (в пробирке) чистый трансформирующий агент Гриффита из убитых вирулентных форм и смешивали его, опять же в пробирке, с авирулентными формами. Получали капсулированных возбудителей. А потом изучали состав этого самого агента. Вначале они доказали, что это не белок, и это само по себе уже было новаторством. Ну а потом и пришли к тому, что этот агент и есть нуклеиновая кислота. Эти опыты американцев – прямые доказательства генетической роли ДНК в передаче наследственной информации. Но не единственные, которые наука считает классикой.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации – самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Расшифровка ДНК

Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.

Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.

Штаммы пневмококков Гриффита

Фредерик Гриффит, бактериолог из Англии, заражал мышей вирусами Pneutnococcus pneumoniae, которые вызывали у них пневмонию, и животные умирали. Пневмококки существуют в двух формах – заразной (вирулентной) и незаразной (авирулентной). Эти формы легко отличить. Вирулентный пневмококк имеет мукополисахаридную капсулу, которая защищает клетку. Авирулентный капсулы не имеет и не может защититься от иммунных клеток мыши, потому мыши и не заболевают пневмонией. Постулат того времени: нагретый вирулентный пневмококк становится авирулентным. Биолог заражает мышей смесью нагретого вирулентного штамма и живого авирулентного (бескапсульного). Мышки умирают. В их телах ученый обнаруживает живые пневмококки с капсульной оболочкой. Вывод Гриффита: от мертвых вирулентных пневмококков к живым, но бескапсульным формам, передается что-то («трансформирующий агент»), что «трансформирует» авирулентные формы в вирулентные с закреплением признака как наследственного (пневмококки быстро размножаются: те, которых он обнаружил в трупах мышей, — сотое поколение первых). А так как вирусы не имеют в строении ничего, кроме нуклеиновых кислот (ДНК и РНК) фактически именно Ф. Гриффиту принадлежит первое доказательство генетической роли ДНК и РНК, хотя он и назвал их «трансформирующий агент». Напомним, произошло это в 1928 году.

Синтез РНК

Нуклеотиды (из которых формируются гены) подразделяются на 4 образующих элемента: аденин, тимин, гуанин и цитозин, которые содержат остатки фосфора, пептозы и азотистого основания. В цепочках ДНК эти нуклеотиды располагаются параллельно друг другу строгими парами: аденин только с тимином, а гуанин только с цитозином.

Необходимо подчеркнуть, что молекула дезоксирибонуклеиновой кислоты  ни целиком, ни частично не может (или не должна) покинуть пределов ядра. РНК выступает в роли копии участка цепи генома, которая способна покинуть ядро, попасть в саму клетку и воздействовать на идущие в ней процессы. И происходит это удивительным образом:

  •  Спираль генов раскручивается на одном из своих участков и формирует развернутые нити обоих цепочек генов.
  •  К развернутому участку подходит специальный фермент-строитель и поверх этого участка синтезирует копию.
  •  У копии есть одно ключевое отличие от оригинальной структуры нуклеотидов: тимин во всех парах ней заменён на урацил. Это и позволяет ей покидать пространство ядра клетки.

Определение структуры ДНК с использованием молекулярного моделирования и рентгенограмм ДНК

Слева показаны основные этапы определения структуры ДНК с помощью рентгеновской кристаллографии, показывающие важную роль, которую играют молекулярные модели структуры ДНК в этом повторяющемся процессе. Справа, изображение реальных рентгеновских паттернов A- и B-ДНК, полученных с ориентированных и гидратированных волокон ДНК (любезно предоставлено доктором Гербертом Р. Уилсоном, Федеральная резервная система — см. Список ссылок).

После того, как ДНК была отделена и очищена стандартными биохимическими методами, образец находится в сосуде, как на рисунке в верхней части этой статьи. Ниже приведены основные этапы генерации структурной информации на основе рентгеноструктурных исследований ориентированных волокон ДНК, взятых из гидратированного образца ДНК с помощью молекулярных моделей ДНК, которые сочетаются с кристаллографическим и математическим анализом рентгенограмм. .

Функции ДНК и аминокислот

Основные функции ДНК

К функциям ДНК относят:

  1. Вхождение в состав хромосом.
  2. Хранение наследственной информации обо всех признаках организма и первичной структуре белков. Первичную структуру белков называют линейной, поскольку она состоит из соединенных друг с другом пептидной связью аминокислот.
  3. Способность к репликации (удвоение). Процесс удвоения осуществляется в интерфазе до процесса деления. Хромосомы состоят из двух хроматид – в будущем они станут дочерними хромосомами. Процесс удвоения важен потому, что после эти дочерние клетки получат наследственную информацию в одинаковом объеме.

Свойства и функции аминокислот

Есть множество азотосодержащих соединений, обладающих двойственной функций. Кроме нуклеиновых кислот нужно выделить аминокислоты.

Определение 4

Аминокислоты – органические соединения, в состав которых входят аминогруппы (- NH2) и карбоксильные группы (- COOH).

Несмотря на то, что в клетках и живых тканях можно встретить больше 300 различных аминокислот, всего 20 из них являются звеньями в процессе строительства пептидов и белков, которые создаются на ДНК-матрице. Такие аминокислоты входят в состав ДНК и называются белковыми.

В последовательности нуклеотидов ДНК или соответствующего гена закодирована последовательность размещения вышеупомянутых аминокислот внутри белка. Другие аминокислоты могут встречаться как в виде свободных молекул, так и в связанном виде.

Есть аминокислоты, которые можно найти только в определенных организмах, а некоторые – только в одном организме. Почти все растения и микроорганизмы, в отличие от животных и людей, синтезируют нужные аминокислоты. Люди и животные не могут синтезировать незаменимые аминокислоты – они получают их только в процессе приема пищи.

Аминокислоты крайне важны для организма, поскольку принимают участие в обмене белков и углеводов, образовании важных органических соединений

В качестве примера – пуриновые и пиримидиновые основания, которые являются важной частью аминокислот

Замечание 1

Аминокислоты можно найти в составе гормонов, токсинов, алкалоидов, антибиотиков, пигментов и др. А еще очень много аминокислот выступает посредниками при передаче нервных импульсов.

Классификация аминокислот

Есть несколько признаков, по которым классифицируют все аминокислоты:

  • взаимное расположения аминогрупп и карбоксильных групп;
  • количество функциональных групп. Здесь выделяют кислые, нейтральные и основные аминокислоты;
  • характер углеводного радикала. В этом случае можно выделить алифатические, ароматические, гетероциклические аминокислоты.

Названия аминокислот, исходя из систематической номенклатуры, получаются, если к названию соответствующей кислоты добавляется приставка амино- и указывается место размещения аминогруппы по отношению к карбоксильной группе.

Есть еще одни вариант называния аминокислоты: обычное название карбоновой кислоты озвучивается вместе с приставкой амино-, а после обозначается буквой греческого алфавита.

Среди наиболее важных аминокислот стоит назвать валин, глицин, лейцин, аланин.

Подводя итоги, отметим, что аминокислоты – это кристаллические вещества, обладающие высокой температурой плавления. Они практически ничем не отличаются от индивидуальных аминокислот – по этой причине они не свойственны многим живым организмам.

Замечание 2

Многие аминокислоты сладкие на вкус.

Важно обозначить, что аминокислоты растворяются в воде, а в органических растворителях – нет. Учитывая этот факт, можно сказать, что аминокислоты похожи на неорганические соединения

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Важность [ править ]

Давняя постоянная динамическая проблема заключается в том, как «самовоспроизведение» ДНК происходит в живых клетках, что должно включать временное разворачивание сверхспиральных волокон ДНК. Хотя ДНК состоит из относительно жестких, очень больших удлиненных биополимерных молекул, называемых волокнами или цепями (которые состоят из повторяющихся нуклеотидных единиц четырех основных типов, прикрепленных к дезоксирибозным и фосфатным группам), ее молекулярная структура in vivo претерпевает динамические изменения конфигурации, которые включают динамически прикрепленные молекулы и ионы воды. Суперспирализация, упаковка гистонами в хромосомных структурах и другие подобные супрамолекулярные аспекты также связаны с топологией ДНК in vivo.что даже сложнее, чем молекулярная геометрия ДНК, что делает молекулярное моделирование ДНК особенно сложной задачей как для молекулярных биологов, так и для биотехнологов. Подобно другим большим молекулам и биополимерам, ДНК часто существует в нескольких стабильных геометриях (то есть проявляет конформационную изомерию ) и конфигурационных, квантовых состояниях, которые близки друг к другу по энергии на поверхности потенциальной энергии молекулы ДНК.

Такая изменяющаяся молекулярная геометрия также может быть вычислена, по крайней мере в принципе, с использованием методов квантовой химии ab initio, которые могут достичь высокой точности для малых молекул, хотя недавно были сделаны заявления о том, что приемлемая точность может быть достигнута также для полинуклеотидов и конформаций ДНК. основа колебательного кругового дихроизма (ВКД) спектральных данных. Такая квантовая геометрия определяет важный класс неэмпирических молекулярных моделей ДНК, исследования которых только начинаются, особенно в отношении результатов, полученных с помощью VCD в растворах. Более подробные сравнения с такими ab initio квантовые вычисления в принципе можно получить с помощью 2D-Фурье ЯМР-спектроскопии и релаксационных исследований растворов полинуклеотидов или специально меченой ДНК, как, например, дейтериевыми метками.

В интересном повороте ролей было предложено использовать молекулу ДНК для квантовых вычислений через ДНК. Созданы как наноструктуры ДНК, так и биочипы для вычисления ДНК .

Какие аминокислоты есть в составе ДНК

Как известно, аминокислоты в ДНК есть – они встраиваются в полипептидную цепь

И здесь важно начать с определения нуклеиновых кислот

Определение 1

Нуклеиновые кислоты – это полимеры, находящиеся в ядрах клеток и состоящие из нуклеотидов.

ДНК состоит из таких компонентов как азотистые основания, дезоксирибиозы, фосфорная кислота. Кроме них в нее входят следующие нуклеотиды:

  • аденин;
  • тимин;
  • цитозин;
  • гуанин.

Любое азотистое основание обладает уникальным механизмом функционирования, а также, что важно, обеспечивает в результате разнообразных сочетаний в триплете многообразие аминокислот, которые формируются. В свою очередь, функционирование каждой клетки живого организма регулируется аминокислотами по-разному

Сведения о различных типах РНК в клетке – матричной, транспортной, рибосомальной — дает нуклеотидная последовательность. У каждого вида РНК есть своя уникальная функция и все они создаются на ДНК матрице – это происходит в результате копирования и самоудвоения нуклеиновой кислоты того же типа.

Ключевое значение в этом процессе отводится принципу комплементарности, под которым понимают попарное соединение нуклеотидов.

Определение 2

Трансляция – сборка белковой молекулы на рибосоме, когда информация считывается со сформированной в процессе транскрипции ДНК-матрицы.

Что входит в состав ДНК клеток? В состав ДНК входят, кроме кодирующих последовательностей, последовательности, за которыми закреплены регуляторная и структурная функции

Важно отметить, что геном эукариот содержит участки с закрепленными на них «генетическими паразитами» — к примеру, транспозонам. Такие участки отличаются аминокислотной последовательностью

Определение 3

Матричный синтез – комплекс реакций, благодаря которому на рибосомах внутри эукариотических клеток формируются белковые молекулы.

Такие белки отличаются первичной структурой, а также соединением аминокислот в виде пептидной связи.

Все вышеперечисленное свидетельствует о том, что на базе ДНК активно создаются определенного типа аминокислоты. Клетке передается устойчивая информация об аминокислотном наборе, который ей нужно будет создать, чтобы она могла выполнять все необходимые функции.

Нуклеотиды соединяются друг с другом с помощью прочных ковалентных связей: сахара в составе одного нуклеотида и фосфорной кислоты – в другом. Соединение двух нуклеотидных цепей осуществляется при помощи слабых водородных связей, формирующимися между азотистыми основаниями. Это принцип комплементарности. Тимин присоединяется к аденину, а гуанин – к цитозину: в результате происходит скручивание в спираль двойной цепи.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector