Уроки биологии в классах естественно-научного профиля
Содержание:
- Самодополняемость и шпильки
- Азотистые основания нуклеотидов ДНК — аденин, гуанин, тимин и цитозин[править]
- Нуклеиновые кислоты. АТФ
- Искусственные азотистые основания
- Расшифровка ДНК
- Регулирующие функции
- Нуклеотидная последовательность
- Что нам известно о нуклеиновых кислотах?
- Роль в клетке
- Значение РНК и ДНК
- Дезоксирибонуклеиновая кислота (ДНК): строение
- Репликация (редупликация) ДНК
- Состав
- Какие аминокислоты есть в составе ДНК
Самодополняемость и шпильки
Последовательность РНК, имеющая внутреннюю комплементарность, в результате чего она сворачивается в шпильку.
Само-комплементарность относится к тому факту, что последовательность ДНК или РНК может складываться сама по себе, создавая структуру, подобную двунитевой. В зависимости от того, насколько близко друг к другу находятся части последовательности, которые дополняют друг друга, нить может образовывать петли шпильки, соединения, выпуклости или внутренние петли. РНК с большей вероятностью будет образовывать такие структуры из-за связывания пар оснований, не наблюдаемого в ДНК, например связывания гуанина с урацилом.
Последовательность РНК, показывающая шпильки (крайний правый и крайний верхний левый) и внутренние петли (нижняя левая структура)
Азотистые основания нуклеотидов ДНК — аденин, гуанин, тимин и цитозин[править]
К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C) и тимин (T), который входит в состав только ДНК, а урацил (U) заменяет его в РНК. Они обладают схожими структурами и химическими свойствами.
Это гетероциклические органические соединения, производные пиримидина и пурина, входящие в состав нуклеотидов. Аденин и гуанин — производные пурина, а цитозин, урацил и тимин — производные пиримидина.
Когда азотистые основания присоединяются ковалентной связью к 1′ атомам рибозы (в РНК) или дезоксирибозы (в ДНК), а к 5′-гидроксильной группе сахара присоединяется одна или несколько фосфатных групп, образуются нуклеотиды.
стандартные нуклеотиды ДНК составляют триплеты — участки ДНК, кодирующие одну аминокислоту. Например, с триплета АУГ (ему соответствует аминокислота метионин) обычно начинается синтез белка на рибосомах.
В таблице приведена структура главных азотистых оснований.
Азотистое основание | Аденин | Гуанин | Тимин | Цитозин | урацил |
Нуклеозид | АденозинA | ГуанозинG | ТимидинT | ЦитидинC | УридинU |
Нуклеозиды, приведённые в таблице, входят в состав моно-, ди- и трифосфатов. Например, аденозин входит в состав АТФ — важнейшего энергетического ресурса организма.
Пуринs C5N4H4 — гетероциклические соединения, имидазольные производные пиримидинов.
Производные пурина играют важную роль в химии природных соединений (пуриновые основания ДНК и РНК; кофермент NAD; алкалоиды, кофеин и т. д.) и, благодаря этому, в фармацевтике — ядро пурина входит в состав некоторых антибиотиков. Пурин и ряд его производных обладают противоопухолевой, противовирусной и противоаллергической активностью.
В таблице приведены производные пурина.
Аденин — азотистое основание, аминопроизводное пурина. Образует две водородных связи с урацилом (в РНК) и тимином (в ДНК) по правилу комплементарности.
Представляет собой бесцветные кристаллы. Химическая формула С5H5N5. Аденин проявляет основные свойства.
Аденин входит в состав многих жизненно важных для живых организмов соединений, таких как аденозин, аденозинфосфорные кислоты, нуклеиновые кислоты, адениновые нуклеотиды и др. В виде этих соединений аденин широко распространен в живой природе.
Гуанин — азотистое основание, аминопроизводное пурина, является составной частью нуклеиновых кислот. Химическая формула — C5H5N5O.
В ДНК и РНК образует три водородные связи с цитозином по правилу комплементарности. Производные гуанилового нуклеотида — ГДФ, ГТФ и цАМФ — участвуют во многих сигнальных путях клетки. Для некоторых процессов, происходящих в клетке — например, для сборки микротрубочек — ГТФ используется как источник энергии.
Пиримидин C4N2H4 — гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель диазинов.
Пиримидин представляет собой бесцветные кристаллы с характерным запахом. Пиримидин проявляет свойства слабого двукислотного основания, так как атомы азота могут присоединять протоны.
Производные пиримидина широко распространены в живой природе, где участвуют во многих важных биологических процессах. Его производные цитозин, тимин, урацил входят в состав нуклеотидов.
Биологическая роль пиримидинов не ограничена нуклеиновыми кислотами. Некоторые пиримидиновые нуклеотиды играют важную роль в процессах обмена углеводов и липидов. Витамин В1 (тиамин) — пиримидиновое производное. Пиримидиновое ядро входит в состав некоторых коферментов и антибиотиков.
Тимин — производное пиримидина. Формула C5H6N2O2.
Присутствует во всех живых организмах, где вместе с дезоксирибозой входит в состав нуклеозида тимидина, который может фосфорилироваться 1-3 остатками фосфорной кислоты с образованием нуклеотидов тимидин моно-, ди- или трифосфорной кислоты (ТМФ, ТДФ и ТТФ).
Дезоксирибонуклеотиды тимина входят в состав ДНК, в РНК на его месте располагается рибонуклеотид урацила. Тимин комплементарен аденину, образует с ним 2 водородные связи.
Цитозин — азотистое основание, производное пиримидина. С рибозой образует нуклеозид цитидин, входит в состав нуклеотидов ДНК и РНК. Во время репликации и транскрипции по правилу комплементарности образует три водородных связи с гуанином.
Представляет собой бесцветные кристаллы. Химическая формула C4H5N3O. Его производные цитозин, тимин, урацил входят в состав нуклеотидов, проявляет основные свойства.
Урацил — пиримидиновое основание, которое является компонентом рибонуклеиновых кислот (РНК) и, как правило, отсутствует в дезоксирибонуклеиновых кислотах (ДНК). В составе РНК может комплементарно связываться с аденином, образуя две водородные связи.
Нуклеиновые кислоты. АТФ
Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г.
И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот — хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.
Нуклеиновые кислоты
│
Дезоксирибонуклеиновая кислота (ДНК) Рибонуклеиновая кислота (РНК)
ДНК и РНК – полимеры, мономерами которых являются нуклеотиды.
Строение нуклеотида – мономера нуклеиновых кислот:
Состав | Строение |
Химические элементы: углерод, водород, кислород, азот, фосфор (C, H, O, N, P). | Это соединение, состоящее из азотистого основания, углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты. |
Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.
Строение нуклеотида ДНК
Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо тимин Т |
Углевод дезоксирибоза | Остаток фосфорной кислоты |
Строение нуклеотида РНК
Органическое азотистое основание: либо аденин А, либо гуанин Г, либо цитозин Ц, либо урацил У |
Углевод рибоза | Остаток фосфорной кислоты |
Молекула ДНК – двойная цепь, закрученная по спирали.
Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК.
Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.
Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц.
Эти пары оснований называют комплементарными парами.
Таким образом, принцип комплементарности (от лат.
complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание.
Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.
Водородные связи между азотистыми основаниями нуклеотидов
ДНК РНК
А = Т А = У
Г ≡ Ц Г ≡ Ц
В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитидиловых.
Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т.е. удвоения).
Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:
1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.
2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.
3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.
При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.
ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация).
Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки.
Искусственные азотистые основания
Существует огромное количество аналогов азотистых оснований. Чаще всего используются флуоресцентные зонды, прямо или косвенно, такие как аминоаллильный нуклеотид , которые используются для мечения кРНК или кДНК в микроматрицах . Несколько групп работают над альтернативными «дополнительными» парами оснований для расширения генетического кода, такими как изогуанин и изоцитозин или флуоресцентный 2-амино-6- (2-тиенил) пурин и пиррол-2-карбальдегид .
В медицине несколько аналогов нуклеозидов используются как противоопухолевые и противовирусные средства. Вирусная полимераза включает эти соединения с неканоническими основаниями. Эти соединения активируются в клетках, превращаясь в нуклеотиды; они вводятся в виде нуклеозидов, поскольку заряженные нуклеотиды не могут легко проникать через клеточные мембраны. По крайней мере, один набор новых пар оснований был объявлен по состоянию на май 2014 года.
Расшифровка ДНК
Расшифровка ДНК клетки это большое и дорогостоящее исследование всех известных человеческих генов. А после завершения исследовательского проекта «Геном человека» это порядка 25 тысяч генов. И хоть расшифровка значительно подешевела, и за прошедший десяток лет упала со ста тысяч долларов до двух тысяч на одного человека, далеко не каждому это покажется приемлемой ценой.
Для удешевления медицинских и генетических исследований всю расшифровку генома разделили тематически. Так стали появляться различные тестирования, по этому принципу они и планируются – выборка генов отвечающих за интересующие тематику исследования процессы.
Регулирующие функции
Комплементарность может быть обнаружена между короткими участками нуклеиновой кислоты и кодирующей областью или транскрибируемым геном, что приводит к спариванию оснований. Эти короткие последовательности нуклеиновых кислот обычно встречаются в природе и выполняют регуляторные функции, такие как молчание генов.
Антисмысловые транскрипты
Антисмысловые транскрипты представляют собой участки некодирующей мРНК, комплементарные кодирующей последовательности. Полногеномные исследования показали, что антисмысловые транскрипты РНК обычно встречаются в природе. Обычно считается, что они увеличивают кодирующий потенциал генетического кода и добавляют общий уровень сложности к регуляции генов. Пока известно, что 40% генома человека транскрибируется в обоих направлениях, что подчеркивает потенциальное значение обратной транскрипции. Было высказано предположение, что комплементарные области между смысловыми и антисмысловыми транскриптами позволят генерировать двухцепочечные гибриды РНК, которые могут играть важную роль в регуляции генов. Например, гипоксия-индуцированный фактор 1α мРНКа и бета-секретазов мРНКа транскрибируется двунаправленным, и это было показано , что антисмысловой транскрипт выступает в качестве стабилизатора к сценарию смысла.
миРНК и миРНК
Формирование и функция miRNA в клетке
miRNA , microRNA, представляют собой короткие последовательности РНК, которые комплементарны участкам транскрибируемого гена и выполняют регуляторные функции. Текущие исследования показывают, что циркулирующая миРНК может использоваться в качестве новых биомаркеров, следовательно, есть многообещающие доказательства для использования в диагностике заболеваний. MiRNA образуются из более длинных последовательностей РНК, которые освобождаются ферментом Dicer от последовательности РНК, которая происходит от гена-регулятора. Эти короткие нити связываются с комплексом RISC . Они совпадают с последовательностями в вышестоящей области транскрибируемого гена из-за их комплементарности, чтобы действовать как глушитель для гена тремя способами. Один из них заключается в предотвращении связывания рибосомы и инициации трансляции. Два — путем разрушения мРНК, с которой связан комплекс. И третья — предоставление новой последовательности двухцепочечной РНК (дцРНК), на которую Дайсер может действовать для создания большего количества миРНК для поиска и разрушения большего количества копий гена. Малые интерферирующие РНК (миРНК) сходны по функциям с миРНК; они происходят из других источников РНК, но служат той же цели, что и miRNA. Учитывая их небольшую длину, правила взаимодополняемости означают, что они могут очень разборчиво подходить к выбору целей. Учитывая, что существует четыре варианта выбора для каждого основания в цепи и длина 20-22 пар оснований для ми / миРНК, это приводит к более чем1 × 10 12 возможных комбинаций . Учитывая, что геном человека составляет ~ 3,1 миллиарда оснований в длину, это означает, что каждая миРНК должна случайно найти совпадение во всем геноме человека только один раз.
Заколки для поцелуев
Шпильки для поцелуев образуются, когда одна нить нуклеиновой кислоты дополняет сама себя, образуя петли РНК в форме шпильки. Когда две шпильки входят в контакт друг с другом in vivo , комплементарные основания двух нитей образуются и начинают раскручивать шпильки до тех пор, пока не образуется комплекс двухцепочечной РНК (дцРНК) или комплекс не разматывается обратно на две отдельные цепи из-за несовпадения шпилек. Вторичная структура шпильки до поцелуя позволяет получить стабильную структуру с относительно фиксированным изменением энергии. Назначение этих структур — уравновешивание стабильности петли шпильки и силы связывания с комплементарной цепью. Слишком сильная начальная привязка к плохому месту и пряди не размотаются достаточно быстро; слишком слабое начальное связывание, и нити никогда не будут полностью образовывать желаемый комплекс. Эти шпильки позволяют обнажить достаточно оснований, чтобы обеспечить достаточно сильную проверку начального связывания, и достаточно слабое внутреннее связывание, чтобы позволить разворачиваться после того, как будет найдено подходящее совпадение.
---C G--- C G ---C G--- U A C G G C U A C G G C A G C G A A A G C U A A U CUU ---CCUGCAACUUAGGCAGG--- A GAA ---GGACGUUGAAUCCGUCC--- G A U U U U U C U C G C G C C G C G A U A U G C G C ---G C--- ---G C--- Kissing hairpins meeting up at the top of the loops. The complementarity of the two heads encourages the hairpin to unfold and straighten out to become one flat sequence of two strands rather than two hairpins.
Нуклеотидная последовательность
Последовательность нуклеотидов – это разновидность генетического равновесия и баланса расположения аминокислот в структуре ДНК, своеобразный порядок размещения остатков эфира в составе нуклеиновых кислот.
Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.
По рекомендации всемирной организации IUPAC последовательность нуклеотидов записывается путем использования следующих букв латинского алфавита с дальнейшей расшифровкой:
Т – тимин,
А – аденин,
G – гуанин,
С – цитозин,
R – GA аденин в комплексе с гуанином и основаниями пурина,
Y – TC пиримидиновые соединения,
K – GT нуклеотиды, содержащие кетогруппу,
M – AC входящие в аминогруппу,
S – GC мощные, отличающиеся тремя водородными соединениями,
W – AT неустойчивые, которые образуют только по две водородные связи.
Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований. Сайт досуга в вашем городе проститутки омска Индивидуальный подход к каждому клиенту
Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.
Что нам известно о нуклеиновых кислотах?
Нуклеиновые кислоты были открыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. nucleos — ядро). В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле.
Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота).
Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.
Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.
Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также углевод дезоксирибоза и остаток фосфорной кислоты.
Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания. Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.
Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации о всех признаках организмов.
В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой 1000 и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.
Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениловых нуклеотидов в любой молекуле ДНК равно числу тимидиловых нуклеотидов (А-Т), а число цитидиловых нуклеотидов равно числу гуаниловых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга. ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток — в два раза меньше — 3,3 · 10-12 г.
Роль в клетке
Конечно, одна, даже большая двойная спираль не способна вместить в себя весь объем информации, необходимый для такого сложного проекта, как человеческое тело. Возможно, поэтому эти цепочки объединены в пары, что делает их похожими на букву «Х». Хромосомы, в свою очередь, тоже парные, и их у человека 46 пар.
Помимо того, что хромосома содержит в себе подробную инструкцию по функционированию клетки, она же путем активации актуальных моменту генов провоцирует клетку вырабатывать определенные белки с самыми различными свойствами. Например, в борьбе с опухолями активно участвует ген старости, который старит ее недоброкачественные клетки и не дает им бесконечно делиться.
Значение РНК и ДНК
Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.
Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.
Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» — Творца, Бога содержится в ней.
По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.
Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.
Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.
К нуклеиновым кислотам
относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК)
и дезоксирибонуклеиновые кислоты (ДНК)
.
Дезоксирибонуклеиновая кислота (ДНК): строение
Роль хранителя наследственной информации у всех клеток — животных и растительных — принадлежит ДНК.
Схема строения ДНК изображена на рисунке 74. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити.
Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше — она достигает сотен тысяч нанометров.
Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100 — 200 нм.
Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул.
Молекулярная масса ДНК соответственно исключительно велика — она достигает десятков и даже сотен миллионов.
Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды.
Нуклеотид — это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида — дезоксирибозы) и фосфорной кислоты.
ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке рисунке 75.
Как видно, у всех четырех нуклеотидов углевод и фосфорная кислота одинаковы.
Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют; нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц).
По размерам А равен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.
Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью — рисунок 76.
Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.
Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы удерживают их рядом.
Представление об этом дает рисунок рисунок 77, на котором изображен небольшой участок двойной спирали.
Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи — всегда Ц.
Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое по всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т).
В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А.
Если на каком-нибудь участке одной цепи ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц, Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г.
Таким образом, если известен порядок следования нуклеотидов в одной цепи, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.
ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах.
В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.
Репликация (редупликация) ДНК
— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным
.
«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты
(АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.
В репликации участвуют следующие ферменты:
- геликазы («расплетают» ДНК);
- дестабилизирующие белки;
- ДНК-топоизомеразы (разрезают ДНК);
- ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
- РНК-праймазы (образуют РНК-затравки, праймеры);
- ДНК-лигазы (сшивают фрагменты ДНК).
С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка
. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.
ДНК-полимераза может присоединять нуклеотид только к 3″-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3″-конца к 5″-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3″-5″ синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей
. На цепи 5″-3″ — прерывисто, фрагментами (фрагменты Оказаки
), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей
(отстающей
).
Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки»
(праймера
). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.
Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон
.
Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.
Состав
Из чего состоит вещество нуклеотид. Оно считается крайне сложным эфиром, относящимся к группе кислот фосфора и нуклеозидов, которые по своим биохимическим свойствам относятся к числу N-гликозидов и содержат гетероциклические фрагменты, связанные с молекулами глюкозы и атомом азота.
В природе наиболее распространенными являются нуклеотиды ДНК.
Кроме этого, еще различают органические вещества с похожими характеристиками строения: рибонуклеотиды, а также дезоксирибонуклеотиды. Все они без исключения являются мономерными молекулами, относящимися к сложным по строению биологическим веществам полимерного типа.
Из них формируется РНК и ДНК всех живых существ, начиная от простейших микроорганизмов и вирусных инфекций, заканчивая человеческим организмом.
Остаток молекулярной структуры фосфора среди нуклеозидфосфатов, образует эфирную связь с двумя, тремя, а в некоторых случаях сразу с пятью гидроксильными группами. Практически все без исключения нуклеотиды относятся к числу эфирных веществ, которые образовались из остатков ортофосфорной кислоты, поэтому их связи устойчивы и не распадаются под воздействием неблагоприятных факторов внутренней и внешней среды.
Какие аминокислоты есть в составе ДНК
Как известно, аминокислоты в ДНК есть – они встраиваются в полипептидную цепь
И здесь важно начать с определения нуклеиновых кислот
Определение 1
Нуклеиновые кислоты – это полимеры, находящиеся в ядрах клеток и состоящие из нуклеотидов.
ДНК состоит из таких компонентов как азотистые основания, дезоксирибиозы, фосфорная кислота. Кроме них в нее входят следующие нуклеотиды:
- аденин;
- тимин;
- цитозин;
- гуанин.
Любое азотистое основание обладает уникальным механизмом функционирования, а также, что важно, обеспечивает в результате разнообразных сочетаний в триплете многообразие аминокислот, которые формируются. В свою очередь, функционирование каждой клетки живого организма регулируется аминокислотами по-разному
Сведения о различных типах РНК в клетке – матричной, транспортной, рибосомальной — дает нуклеотидная последовательность. У каждого вида РНК есть своя уникальная функция и все они создаются на ДНК матрице – это происходит в результате копирования и самоудвоения нуклеиновой кислоты того же типа.
Ключевое значение в этом процессе отводится принципу комплементарности, под которым понимают попарное соединение нуклеотидов.
Определение 2
Трансляция – сборка белковой молекулы на рибосоме, когда информация считывается со сформированной в процессе транскрипции ДНК-матрицы.
Что входит в состав ДНК клеток? В состав ДНК входят, кроме кодирующих последовательностей, последовательности, за которыми закреплены регуляторная и структурная функции
Важно отметить, что геном эукариот содержит участки с закрепленными на них «генетическими паразитами» — к примеру, транспозонам. Такие участки отличаются аминокислотной последовательностью
Определение 3
Матричный синтез – комплекс реакций, благодаря которому на рибосомах внутри эукариотических клеток формируются белковые молекулы.
Такие белки отличаются первичной структурой, а также соединением аминокислот в виде пептидной связи.
Все вышеперечисленное свидетельствует о том, что на базе ДНК активно создаются определенного типа аминокислоты. Клетке передается устойчивая информация об аминокислотном наборе, который ей нужно будет создать, чтобы она могла выполнять все необходимые функции.
Нуклеотиды соединяются друг с другом с помощью прочных ковалентных связей: сахара в составе одного нуклеотида и фосфорной кислоты – в другом. Соединение двух нуклеотидных цепей осуществляется при помощи слабых водородных связей, формирующимися между азотистыми основаниями. Это принцип комплементарности. Тимин присоединяется к аденину, а гуанин – к цитозину: в результате происходит скручивание в спираль двойной цепи.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание