Функции, значение и строение плазматической мембраны
Содержание:
Белки клеточной мембраны
Для клетки жизненно важно взаимодействовать как с соседними клетками, так и с окружающим миром. Некоторые микроскопические молекулы или потоки света беспрепятственно проникают сквозь мембрану, взаимодействуя с белками напрямую
При этом в клетке запускаются химические реакции выработки новых белков или появляется новая программа жизнедеятельности клетки. Пример ответных реакций это: деление клетки, выделять ферменты или гормоны. Клетка может запустить механизм самоуничтожения. Принцип у всех один – внутриклеточный запуск каскада превращений химических реакций.
Чтобы клетка могла функционировать продолжительное время, в нее должны поступать питательные вещества извне. Сигналы, достигающие внутриклеточного пространства, должны правильно обрабатываться и выдавать ответную реакцию. Для этого на поверхности мембраны есть специальные рецепторы: ионные каналы, порины, транспортеры, молекулярные моторы, структурные белки.
Появление гормонов или сигнальных молекул снаружи клетки вызывает в рецепторных белках сигнал. Самый яркий представитель – рецептор инсулина, который отвечает за снабжение клетки глюкозой. Транспорт ионов происходит через ионные каналы, которые поддерживают разницу в их концентрации между наружной средой и внутренней. Натриевые и калевые каналы отвечают за передачу нервного импульса. Порины и транспортеры отвечают за перенос воды и определенных молекул сквозь мембрану. Структурные белки поддерживают структуру мембраны и взаимодействуют с остальными белками.
Кроме всего прочего есть еще внутриклеточные пути передачи сигналов при помощи каскадов реакций.
Строение
Плазматическая мембрана состоит из молекул трех основных видов — протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.
В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:
- Липиды располагаются в два слоя, составляя основу клеточной стенки;
- Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные — наружу;
- Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
- Кроме белков здесь имеется небольшое количество углеводов — гексоз;
Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.
Химический состав
Плазмалемма или клеточная мембрана представляет собой молекулярную эластическую структуру, состоящую из большого количества липидов, а также белков. Она позволяет отделить клетку от других жидкостей в организме, предотвратить ее повреждение, принимает участие в метаболических процессах. Помимо этого, цитолемма помогает разделить камеры клетки для обеспечения ее нормального функционирования.
Химический состав плазматический мембраны в основном представлен фосфолипидами, но присутствуют и другие молекулы. Этот вид липидов относится к сложным, поэтому специалисты долгое время не могли точно определить состав цитолеммы. Каждый фосфолипид имеет гидрофильную часть и гидрофобную. Первая представляет собой голову молекулы и обращена наружу, вторая — хвост и обращена внутрь.
У большинства живых организмов на планете химический состав мембраны очень похож, как и ее структура. Однако существуют исключения. У некоторых организмов она образована глицерином и другими спиртами. Белки внутри биологической оболочки могут быть разными. Наиболее часто встречаются следующие:
- Интегральные протеины пронизывают пленку насквозь, поэтому могут быть внутри и снаружи клетки. Их количество в составе наибольшее.
- Полуинтегральные белки могут быть погружены одной частью во внешний или внутренний слой, выполняют функцию соединения мембраны с цитоскелетом.
- Поверхностные располагаются на пленке или ее внутреннем слое, не погружаются в него.
В первые годы изучения цитолеммы специалисты не разделяли протеины на разные группы, считая их одинаково необходимыми и выполняющими одни и те же функции. Однако сегодня, благодаря развитию технологий и появлению современных микроскопов, можно с уверенностью сказать, что строение мембраны довольно сложное, даже у простых растительных клеток.
История исследования
Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.
В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.
В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.
В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»
И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.
Рисунок клеточной мембраны.
Строение и функции плазматической мембраны
Выше было рассмотрено то, как путем долгих исследований, занявших практически половину века, было открыто точное строение плазмалеммы. Так из чего же состоит плазматическая мембрана?
Можно выделить два основных типа веществ, составляющих структуру плазмалеммы:
- три вида липидов: гликолипиды, фосфолипиды, холестерол;
- белки.
Липиды располагаются широким слоем посередине, а с обеих сторон от него прикреплены белки. Белковый слой не является сплошным, а, скорее, больше похож на мозаику. Белки плазматической мембране нужны для того, чтобы внутрь могли проникнуть гидрофобные вещества, необходимые для жизнедеятельности, но неспособные самостоятельно преодолеть билипидный слой.
Функции цитолеммы заключаются в следующем:
- Защита внутренних органоидов от механического воздействия и давления. Клеточная мембрана растения подобную функцию не выполняет, так как у растений присутствует плотная клеточная стенка.
- Отделение молекул, которые должны попасть внутрь, от тех, которым по определенным причинам нельзя проникать в клетку.
- Способствует взаимодействию со внешней средой, помогает проникать внутрь питательным веществам, транспортирует наружу переработанные вещества.
- Принятие сигналов (импульсов) от других клеток, говорящих о состоянии внешней среды.
- Определение с помощью специальных рецепторов вида других клеток для взаимодействия с ними. Подобное взаимодействие возможно благодаря тому, что каждая цитолемма уникальна, у каждой из них своеобразная конфигурация белков.
Плазматическая мембрана животных клеток
Клетки всех живых существ устроены примерно одинаково, обладают схожими органоидами, выполняющими практически идентичные функции. У животных тоже есть клеточная мембрана, но она обладает некоторыми особенностями, не свойственными, к примеру, растениям или одноклеточным.
Клеточная мембрана животных также состоит из трех слоев, билипидного внутреннего слоя и двух белковых слоев снаружи. Отличие от цитолеммы растения заключается в том, что у животных отсутствует клеточная стенка.
Как известно, плазматическая мембрана и клеточная стенка это не одно и то же. Клеточная стенка, как правило, располагается вокруг плазмалеммы, принимая на себя защитную функцию, регулируя давление и ограждая от повреждений цитоплазму. Плазматическая мембрана есть у животных, а вот развитой стенки нет
Поэтому защитную функцию вынужден выполнять рассматриваемый органоид, тем самым увеличивая степень своей важности для организма
В целом же, клеточная мембрана, ее строение, которое было рассмотрено выше, играют очень большую роль
Наиболее важной функцией из рассмотренных в масштабах всего организма считается проведение веществ внутрь. Благодаря этой способности цитолеммы, организм может получать необходимые элементы. Специальные каналы, которые пронизывают цитолемму, служат именно для транспортировки веществ
Если эти каналы по каким-либо причинам потеряют тонус, не смогут выполнять свои функции, клетка начнет гибнуть. Выяснив это, ученые совершили прорыв в медицине, установили, как можно лечить или избегать множества заболеваний, а также то, каким именно способом происходит обмен клетки с внешней средой
Специальные каналы, которые пронизывают цитолемму, служат именно для транспортировки веществ. Если эти каналы по каким-либо причинам потеряют тонус, не смогут выполнять свои функции, клетка начнет гибнуть. Выяснив это, ученые совершили прорыв в медицине, установили, как можно лечить или избегать множества заболеваний, а также то, каким именно способом происходит обмен клетки с внешней средой.
А какие еще интересные факты о строении или функционировании плазматической мембраны знаете вы? Делитесь своими знаниями в ! А также смотрите видео о плазматической мембране в животной клетке.
Функции клеточной мембраны
Плазматическая мембрана ведет себя активно, как любой клеточный органоид. Это не просто барьер: «клеточная капсула» выполняет много задач.
Транспортная функция
Рис. 4. Механизмы прохождения веществ через клеточную мембрану
Осуществляет выборочный транспорт веществ, поскольку липидные слои для большинства соединений непроницаемы. Через мембрану идет пассивный и активный транспорт:
1. Пассивный транспорт — это простая диффузия, которая идет с низкой скоростью. Через барьер проникают газы, вода, ряд органических веществ. Облегченная диффузия происходит с участием белков-переносчиков и идет с большей скоростью. На пассивный транспорт не требуется энергетических затрат. Белки-переносчики относятся к транспортным. Они «проносят» вещества через мембрану или через специальные каналы, предназначенные для проникновения различных ионов.
2. Перенос макромолекул или крупных частиц осуществляется путем эндоцитоза. При эндоцитозе на мембране возникают впячивания для захвата твердой частицы пищи. Вокруг нее образуется вакуоль, которая обволакивает частицу и переносит внутрь клетки.
Рис. 5. Эндоцитоз
Эндоцитоз делится на фагоцитоз или захват твердой частицы и пиноцитоз, когда поглощается жидкий материал (коллоидный раствор, суспензии или просто раствор).
3. Вывод веществ из клетки через мембрану осуществляется путем экзоцитоза. Вещества, которые нужно переправить в межклеточную жидкость, «упаковываются» в мембранные пузырьки. Они подходят к цитолемме, встраиваются в нее и содержимое пузырьков выбрасывается из клетки. Это различные продукты метаболизма.
Рис. 6. Экзоцитоз
4. Активный транспорт осуществляется против градиента концентрации и требует затрат энергии (АТФ). Вещества из области с меньшей концентрацией переходят в область с более концентрированным содержимым. Примером служит натрий-калиевый насос, когда из клетки выводятся ионы натрия и закачиваются ионы калия.
Проницаемость мембран разных клеток неодинакова. Чтобы попасть в клетку, вещество должно обладать определенным размером, химическими свойствами и электрическим зарядом. «Неподходящие» по своим параметрам молекулы просто не способны попасть во внутреннее содержимое клетки.
Другие функции клеточной мембраны
Плазматическая мембрана осуществляет:
- Структурную функцию, отделяя клетку от внешней среды. Так клетка работает как автономный организм. Она содержит набор органоидов, которые «плавают» во внутренней среде – цитоплазме.
- Рецепторную, реагируя на внешние раздражители. Подобную функцию осуществляют белки (гормоны, нейромедиаторы), которые получают сигналы-воздействия извне. Это служит отправной точкой для изменения хода обменных процессов внутри клетки.
- Ферментативную или метаболическую, когда мембранные белки-ферменты участвуют в разных химических процессах метаболизма. Большинство ферментов связаны с мембраной и в липидной оболочке созданы определенные условия для их работы, поэтому плазмалемма непосредственно и косвенно влияет на процессы метаболизма.
- Энергообразующую, которую осуществляют митохондрии – органоиды, которые относят к «маленьким силовым станциям клетки». Многие процессы, связанные с обменом между клеткой и межклеточным пространством нуждаются в дополнительных затратах энергии. Клетки также способны обмениваться энергией. Этот процесс осуществляется через белковые каналы.
- Матричную, когда цитолемма определяет местонахождение, фиксирует расположение органоидов внутри клетки и их позицию относительно друг друга. Оптимальное размещение позволяет органоидам легче взаимодействовать друг с другом.
- Маркировочную, так как каждая клетка снабжена «этикеткой» или маркировкой. Это антигены, состоящие из гликопротеинов (белков с разветвленными олигосахаридными цепями). Разветвления имеют разные конфигурации, поэтому каждый тип клеток снабжен уникальным «ярлыком», что позволяет идентифицировать или узнавать их. Например, иммунные клетки человека (макрофаги) распознают инородную клетку, проникшую в организм (бактерию или вирус). Они начинают работу по ее уничтожению. Таким же путем организм избавляется от старых, больных, мутировавших клеток.
Плазмалемма или мембрана – важнейшая составная часть живой клетки. Она выполняет не меньше функций, чем любой другой органоид. Имеет сложное строение и таит в себе много загадок, которые еще не раскрыты учеными. Этот «живой пропускной шлюз» продолжают изучать, чтобы использовать на благо человека.
Источники изображений:
- Рис. 1. — www.youtube.com/watch?v=uaC8KhzuH98&ab_channel=BogdanTuziak
- Рис. 3. — uchitel.pro/строение-и-функции-клетки/
- Рис. 4. — 900igr.net
Надмембранные комплексы клеток
У клеток животных и человека есть тонкий поверхностный пласт – гликокаликс (от греч. глицис – сладкий и лат. callum – толстая кожа). Он толщиной – несколько десятков наннометров. Состоит из гликопротеидов (соединений белков с углеводами) и частично гликолипидов (соединений липидов с углеводами). Гликокаликс обеспечивает непосредственную связь клеток с внешней средой, между клетками. Клетка воспринимает раздражения через гликокаликс. Не выполняет опорной функции. В гликокаликсе благодаря наличию ферментов может происходить внеклеточное пищеварение. Гликокаликс состоит из гликопротеидов (соединения углеводов с белками) и гликолипидов (соединения углеводов с липидами).
У клеток грибов и растений – клеточные стенки (оболочки). В клеточных стенках растений содержится целлюлоза. Нерастворимые в воде волоконца целлюлозы собраны в пучочки и образуют каркас, углубленный в основу – матрикс. Матрикс содержит преимущественно полисахариды. В состав клеточной стенки растений могут входить и другие вещества: липиды, белки, неорганические соединения (двооксид кремния, соли кальция и т. п.). Клеточные стенки способны древеснеть – промежутки между волоконцами целлюлозы заполняются особым органическим соединением – лигнином. Все соединения клеточной стенки синтезируются в клетке. Через клеточные стенки растений происходит транспорт воды и определенных соединений. Это можно наблюдать в явлениях плазмолиза и деплазмолиза. В растворе, концентрация солей которого выше концентрации солей в цитоплазме, вода выходит из клетки. Пристеночный слой цитоплазмы отделяется от клеточной стенки – явление плазмолиза. В растворе, концентрация которого будет ниже концентрации солей в цитоплазме, – будет наблюдаться обратный процесс – явление деплазмолиза, при котором вода будет поступать в клетку и внутриклеточное давление будет возрастать.
В клеточных стенках грибов содержится хитин, а также разнообразные полисахариды (целлюлоза, гликоген и т. п.). В состав клеточных стенок некоторых грибов могут входить темные пигменты (меланины), пептиды, растворимые сахара, аминокислоты, фосфаты и т. п.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов;
- гликолипидов;
- холестерола;
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение;
- каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
- холестерол придает мембране упругость и жесткость;
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Клеточные оболочки
Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).
Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.
Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).
А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).
В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.
Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.