Клеточная стенка — строение, состав и основные функции

Плазмодесмы

Протопласты соседних клеток связаны между собой тонкими нитями цитоплазмы — плазмодесмами. Эти структуры присущи только растительным клеткам.

В нормальном состоянии плазмодесмы невидимы в световой микроскоп, однако, если стимулировать набухание оболочки плазмодесмы, становятся заметными, поэтому выявлены и описаны они были уже достаточно давно. Хотя детали строения плазмодесм изучены сравнительно недавно с помощью электронного микроскопа. Под электронным микроскопом плазмодесмы выглядят как узкие каналы (диаметром от 30 до 60 нм), выстланные плазматической мембраной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера — десмотрубочка, которая сообщается с эндоплазматическим ретикулом обеих смежных клеток.

Десмотрубка напоминает цитоплазматические микротрубочки или жгутики простейших. Она состоит из 11 спирально расположенных белковых субъедениц.

Вокруг десмотрубки локализируется цитоплазма, которая во многих типах плазмодесм непосредственно не соединяется с цитоплазмой клеток.

В плазмодесмах обнаружена АТФ — азная активность.

Наличие плазмодесм обеспечивает непрерывность цитоплазмы клеток, составляющих органы и ткани. Такая непрерывная система называется симпласт. Кроме того, за счёт плазмодесм обеспечивается единство эндоплазматической сети, переходящей из клетки в клетку. Единая эндоплазматическая сеть получила название эндопласт.

Таким образом, выделяется три непрерывных компартмента в растительных тканях — это:

  • единая цитоплазма — симпласт,
  • непрерывный ретикулум — эндопласт и соприкасающиеся между собой клеточные стенки, вместе с межклетниками составляют непрерывную систему — апопласт.

Размещаются плазмодесмы в стенке либо группами, либо равномерно разбросаны по всей стенке.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция
Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая — Накопление и трансформация энергии;
— световые реакции фотосинтеза в хлоропластах;
— Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Функции

Цитоплазма объединяет клеточные органеллы, является субстратом для протекания биохимических реакций и транспорта химических соединений (рис. 3). Коллоидный раствор облегчает взаимодействие между всеми компонентами клетки. Цитоскелет в виде белковых трубочек и нитей выполняет роль опоры.

Рис. 3. Растительная клетка

Функции цитоскелета:

  1. Создание «механического каркаса», опоры.
  2. Поддержание формы клетки.
  3. «Мотор» движения и деления цитоплазмы.
  4. Транспорт органелл и других компонентов клетки.
  5. Закрепление органелл в определенном положении.

Таблица 1.

Функции цитоплазмы и значение

Функция Значение
Тургор Создает тургорное (внутреннее) давление при осмосе (односторонней диффузии) воды, поступающей в клетку. За счет плотной оболочки клеток растений и грибов тургор выше, чем в животной клетке.
Транспорт Осуществляет транспорт веществ из внешней среды в клетку и обратно. Связывает деятельность органелл.
Клеточный гемостаз Поддерживает постоянство внутренней среды клетки, придает форму, является вместилищем органелл.
Запас веществ Запасает и хранит вещества в виде клеточных включений.

Цитоплазма осуществляет химическое взаимодействие и транспорт веществ внутри клетки. Еще одна функция — хранение и перемещение молекул АТФ. В цитоплазме запасаются молекулы крахмала, капли липидов.

Деление цитоплазмы

Цитокинез — деление цитоплазмы в клетке после завершения деления ядра. Цитокинез в растительной клетке происходит за счет формирования клеточной перегородки. В животной клетке возникает перетяжка. В результате образуются две дочерние клетки. Цитокинез происходит и в митозе, и в мейозе.

Структурная организация клеточной оболочки

Клеточная стенка, как мы видели, построена из немногих основных компонентов. Применение химических методов анализа позволило выявить, что:

  • соседние цепи целлюлозы в микро — и макрофибриллах связаны водородными связями;
  • молекулы гемицеллюлозы прикреплены к поверхности целлюлозных микрофибрилл также водородными связями;
  • некоторые молекулы гемицеллюлозы связаны с молекулами кислого пектина через молекулы нейтрального пектина;
  • сами пектиновые полимеры сшиваются между собой ионами кальция (Ca);
  • гликопротеины вероятно присоединены к молекулам пектина;
  • и, наконец, существуют ковалентные связи между лигнином и целлюлозой.

Таким образом, согласно этой модели, клеточную стенку можно рассматривать как единую гигантскую макромолекулу.

Осмотическое давление в клетке

Осмотическое давление — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Тургор тканей — напряжённое состояние оболочек живых клеток. Тургорное давление — внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Тургор обуславливается тремя факторами: внутренним осмотическим давлением клетки, которое вызывает напряжение клеточной оболочки, внешним осмотическим давлением, а также упругостью клеточной оболочки.

Рисунок 11. Взаимодействие эритроцитов и растительной клетки с растворами.

Строение клеток

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

  • прокариоты (доядерные) — более простые по строению и возникли в процессе эволюции раньше;
  • эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, в основном, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариоты (от лат. Pro — перед, до и греч. Κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариоты (эвкариоты) (от греч. Ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Строение прокариотической клетки

Рисунок 1. Прокариотическая клетка бактерий

Клетки двух основных групп прокариот — бактерий и архей — похожи по структуре: характерными их признаками являются отсутствие ядра и мембранных органелл.

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Дополнительные органеллы бактерий

Ворсинки (пили, фимбрии) — это тонкие белковые выросты наповерхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезиюбактерий на поверхности клеток макроорганизма. Они характерныдля грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клеткамив процессе конъюгации. Через них идет обмен генетической ин-формацией от донора к реципиенту. Донор — мужская клетка —обладает секс-пили. Женская клетка — реципиент — не имеетсекc-пили. Белок секс-пили колируется генами F-плазмиды.Жгутики — органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок — флагелин. Количество и расположение жгутиков может быть различным.Различают:1) монотрихи (имеют один жгутик);2) лофотрихи (имеют пучок жгутиков на одном конце клетки);3) амфитрихи (имеют по одному жгутику на каждом конце);4) перитрихи (имеют несколько жгутиков, расположенных попериметру).О подвижности бактерий судят, рассматривая живые микро-организмы, либо косвенно — по характеру роста в среде Пешко-ва (полужидком агаре). Неподвижные бактерии растут строго поуколу, а подвижные дают диффузный рост.

Капсулы представляют собой дополнительную поверхностную оболочку. Они образуются при попадании микроорганизмав макроорганизм. Функция капсулы — защита от фагоцитоза и антител.Различают макро- и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула — утолщениеверхних слоев клеточной стенки. Обнаружить ее можно толькопри электронной микроскопии. Микрокапсулы характерны для вирулентных бактерий.

Среди бактерий различают:

1) истиннокапсульные бактерии (род Klebsiella) — сохраняюткапсулообразование и при росте на питательных средах, а нетолько в макроорганизме;

2) ложнокапсульные — образуют капсулу только при попадании в макроорганизм.Капсулы могут быть полисахаридными и белковыми. Они играют роль антигена, могут быть фактором вирулентности.Споры — это особые формы существования некоторых бактерий при неблагоприятных условиях внешней среды. Спорообразование присуще грамположительным бактериям. В отличие отвегетативных форм споры более устойчивы к действию химических, термических факторов.Чаще всего споры образуют бактерии рода Bacillus и Clostridium.Процесс спорообразования заключается в утолщении всехоболочек клетки. Они пропитываются солями дипикалината кальция, становятся плотными, клетка теряет воду, замедляются всеее пластические процессы. При попадании споры в благоприятные условия она прорастает в вегетативную форму.У грамотрицательных бактерий также обнаружена способность сохраняться в неблагоприятных условиях в виде некультивируемых форм. При этом нет типичного спорообразования, но в таких клетках замедлены метаболические процессы, невозможно сразу получить рост на питательной среде. Но при попадании в макроорганизм они превращаются в исходные формы.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к шероховатому (гранулярному, грубому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Рисунок 4. Эндоплазмический ретикулум

Гранулярный ЭПР

  •  Расположены в плоских мешках
  •  Рибосомы на поверхности придают ей грубый вид
  •  Некоторые полипептидные цепи входят в грубый ЭПР и модифицированы
  •  Клетки, которые специализируются на секретировании белков, имеют много грубых ЭПР

Гладкий ЭПР

  •  Серия взаимосвязанных трубочек
  •  На поверхности нет рибосом
  •  Липиды собраны внутри канальцев
  •  Гладкая ЭПР печени инактивирует отходы, лекарства
  •  Саркоплазматическая сеть мышц является специализированной формой, которая хранит кальций

Функции ЭПР

Гладкий ЭПР

  1. Синтезирует липиды
  2. Метаболизирует углеводы
  3. Детоксифицирует лекарства и яды
  4. Накапливает ионы кальция

Гранулированный ЭПР

  1. Имеет связанные рибосомы
  2. Распределяет транспортные пузырьки, белки, окруженные мембранами
  3. Является мембранным заводом для клетки
  4. Аппарат Гольджи

Межклеточные контакты

У высших животных и растений клетки объединены в ткани и органы, в составе которых они взаимодействуют между собой, в частности, благодаря прямым физическим контактам. В растительных тканях отдельные клетки соединяются между собой с помощью плазмодесм, а животные образуют различные типы клеточных контактов, в основном десмосомы.

Плазмодесмы растений — это тонкие цитоплазматические каналы, которые проходят через клеточные стенки соседних клеток, соединяя их между собой. Полость плазмодесм устлана плазмалеммой. Совокупность всех клеток, объединенных плазмодесмами, называется симпластом, между ними возможен регулируемый транспорт веществ.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Повреждения клеточных мембран

Клеточная мембрана может повредиться вследствие различных факторов:

  • Механическое повреждение. Делает клетку более проницаемой для различных веществ.
  • Ферментативное повреждение. Возникает при цитолитическом типе аллергии.
  • Повреждение из-за недостатка аденозинтрифосфата вследствие нарушения обменных процессов в клетке.
  • Слипание белков под воздействием высоких температур, электрического тока, кислот и щелочей.
  • Генетическая предрасположенность к неправильному синтезу составляющих элементов мембраны.
  • Окисление липидов свободными радикалами.
  • Избыток или недостаток витаминов Е и D.
  • Под влиянием антител, посчитавших клетку чужеродным объектом.

Все повреждения мембраны можно разделить на три типа:

  • транспортные;
  • функционально-метаболические;
  • структурные.

Повреждения клеточной мембраны ведут к тому, что в клетку попадают вредные вещества, органеллы разрушаются, клетка гибнет, цитоплазма вытекает наружу. Этот процесс ведет к воспалению от небольшого участка до целого органа. В худшем случае может возникнуть тяжелый сепсис.

Некоторые заболевания, которые могут возникнуть вследствие гибели клетки из-за разрушения мембранного слоя:

  • хроническая обструктивная болезнь легких (ограничение воздушного потока в дыхательных путях, вызванное инфицированием тканей);
  • атеросклероз (заболевание артерий, вызванное нарушением липидного и белкового обмена);
  • красная волчанка (поражение кожных покровов из-за аллергии или инфекции);
  • деменция (приобретенное слабоумие, вызванное поражением головного мозга);
  • рак;
  • цистинурия (нарушение транспорта аминокислот в почках);
  • сахарный диабет.

Функции

Ядро отвечает за ряд важнейших функций, без которого клетка не может существовать.

  1. Управление всеми обменами веществ в клетке, ее жизнедеятельность.
  2. Синтез информационной РНК, участвующей в транскрипции.
  3. Контроль за существованием органоидов – рост, деление, работу.
  4. Хранение, воспроизведение и передача информации дочерним клеткам при делении.

Безъядерные клетки, которым априори несвойственно отсутствие ядерного аппарата, постепенно умирают. Если из клетки структуру удалить, то рост и развитие целой клетки остановится, а распад и саморазрушение усилится.

Из цитоплазмы или с помощью других органоидов клетки новое ядро не образуется. Его можно получить только путем деления или дробления уже существующего.

Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

Органоиды — относительно обособленные компоненты, обладающие специфическими функциями и особенностями строения. Основная часть генетического материала эукариотической клетки сосредоточена в ядре. Центральный органоид в одиночку не в состоянии обеспечить реализацию наследственной информации. Принимают участие цитоплазма и рибосомы. Они расположены в основном на шероховатой эндоплазматической сети.

Синтезированные белки транспортируются в комплекс Гольджи, после преобразований — в те части клетки, где они нужны. Благодаря лизосомам клетки не превращаются в «свалки отходов».

Митохондрии вырабатывают энергию, необходимую для осуществления процессов в клетке. Хлоропласты у растений служат для получения исходного материала, участвующего в энергетических превращениях.

Условно все органоиды клетки делят на три группы по характеру выполняемых функций. Митохондрии и хлоропласты осуществляют превращения энергии. Рибосомы, их скопления осуществляют синтез белков. Другие образования принимают участие в синтезе и обмене веществ.

Несмотря на существующие различия, все части клетки тесно взаимодействуют. Органоиды взаимосвязаны не только в пространстве, но и химически. Связывает все части клетки цитоплазма, в ней же происходят многочисленные реакции. В результате формируется единая структурная и функциональная система.

Рис.1 Растительная клетка 

Отличие клеточного строения растений от животных — наличие стенки, состоящей из целлюлозы, пектина, лигнина.

Под прочной оболочкой находится плазматическая мембрана, имеющей типичное строение. Есть поры, через которые осуществляется связь между соседними клетками посредством плазмодесм, цитоплазматических мостиков. Нет центриолей, характерных для животных.

Важное отличие растительных организмов — наличие пластид. Крупные хлоропласты придают частям растений зеленый цвет. Фотосинтез в зеленых пластидах — процесс автотрофного питания

Растения создают органическое вещество из воды и углекислого газа при участии солнечного света

Фотосинтез в зеленых пластидах — процесс автотрофного питания. Растения создают органическое вещество из воды и углекислого газа при участии солнечного света.

Оранжевая и желтая окраска обусловлена присутствием других типов пластид, красная и синяя — возникает благодаря антоцианам. Лейкопласты и хромопласты специализируются на хранении веществ.

Крупная центральная вакуоль в растительной клетке заполнена клеточным соком. Органоиду принадлежит ведущая роль в поддержании тургора, хранении полезных веществ и разрушении старых белков, отживших свое органоидов.

Строение животной клетки

Это типичные эукариотические клетки. Под плазматической мембраной находятся цитоплазма и органоиды. Клеточной стенки нет. ДНК локализована в ядре и митохондриях.

Рис.2 Животная клетка

Вакуоли в клетках животных выполняют пищеварительные и сократительные функции. Центриоли состоят из пучков микротрубочек, принимающих участие в процессе деления. В качестве органелл движения могут присутствовать реснички и жгутики. Они важны для перемещения одноклеточных животных. В организме многоклеточных создают движение жидкостей или молекул твердых веществ вдоль неподвижных клеток.

Клетка — мельчайшая единица строения многоклеточных организмов. У одноклеточных это и есть тело. Любая клетка представляет собой сложную биохимическую систему. Части или органоиды действуют как единое целое, обеспечивают жизнедеятельность, а при размножении — передачу наследственных признаков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector