Функции клеточной мембраны — характеристика, свойства и строение
Содержание:
- Рецепторная функция мембраны
- Клеточные оболочки
- Структура и состав
- Что такое клеточная мембрана
- Структура цитолеммы
- Избирательная проницаемость
- Транспорт веществ
- Основные функции
- История исследования[ | код]
- Избирательная проницаемость[ | код]
- Основные сведения
- Органеллы клетки
- Жидкостно-мозаичная модель строения
- Функции
Рецепторная функция мембраны
Принципы работы мембранных рецепторов.
Клетка постоянно получает сигналы из внешней среды о наличии там разнообразных сигнальных молекул и должна адекватно отвечать на эти сигналы, передавая информацию от них внутрь клетки. Для этого в плазматической мембране встроены специальные рецепторные комплексы. Как правило, это сложные образования из нескольких белковых молекул (в состав рецепторов могут входить также мембранные липиды и углеводы).
Все разнообразные рецепторы клеточных мембран имеют ряд общих особенностей:
1. Рецепторы специфичны – т.е. связываются только с определенными веществами. Специфичность рецептора определяется структурой «активного центра» в его молекуле и возможностью других молекул связываться с этим активным центром.
2. Процесс рецепции и передачи сигнала на мембрану или вглубь клетки проходит со значительной затратой энергии.
3. По принципу работы все рецепторы можно разделить на три группы: рецепторы прямого действия; рецепторы непрямого действия и каталитические рецепторы. В первом случае молекула связывается с рецепторной частью комплекса и передает сигнал непосредственно на ионный канал. Во втором варианте рецепторная часть комплекса передает сигнал на ионный канал в мембране или вглубь клетки через систему вспомогательных белков, называемых «вторичными посредниками». При третьем варианте рецепторная часть комплекса после взаимодействия с сигнальной молекулой активируется и выполняет функции фермента, влияя, таким образом, на работу клетки.
Клеточные оболочки
Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).
Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.
Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).
А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).
В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.
Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.
Структура и состав
Основным компонентом мембран являются фосфолипиды. Эти молекулы амфипатические, имеют полярную и аполярную зоны. Полярность позволяет им взаимодействовать с водой, в то время как хвост представляет собой гидрофобную углеродную цепь.
Ассоциация этих молекул происходит спонтанно в бислое, причем гидрофобные хвосты взаимодействуют друг с другом, а головки направлены наружу..
В клетке маленького животного мы находим невероятно большое количество липидов, порядка 10
9
молекулы. Мембраны имеют толщину около 7 нм. Гидрофобное внутреннее ядро, почти во всех мембранах, занимает толщину от 3 до 4 нм..
Жидкая мозаичная модель
Модель, которая в настоящее время обрабатывается биомембранами, известна как «жидкая мозаика», сформулированная в 70-х годах исследователями Сингером и Николсоном. Модель предполагает, что мембраны состоят не только из липидов, но также из углеводов и белков. Термин мозаика относится к указанной смеси.
Лицо мембраны, которая обращена к внешней стороне клетки, называется экзоплазматическим лицом. Напротив, внутренняя сторона цитозольная.
Эта же номенклатура применяется к биомембранам, составляющим органеллы, за исключением того, что экзоплазматическая поверхность в этом случае указывает на внутреннюю часть клетки, а не на внешнюю..
Липиды, которые составляют мембраны, не являются статичными. Они имеют возможность перемещаться с определенной степенью свободы в определенных регионах через структуру.
Мембраны состоят из трех основных типов липидов: фосфоглицериды, сфинголипиды и стероиды; все они амфипатические молекулы. Далее мы подробно опишем каждую группу:
Типы липидов
Первая группа, состоящая из фосфоглицеридов, происходит из глицерол-3-фосфата. Хвост, имеющий гидрофобный характер, состоит из двух цепей жирных кислот. Длина цепей различна: они могут содержать от 16 до 18 атомов углерода. Они могут иметь одинарные или двойные связи между атомами углерода.
Подклассификация этой группы дается типом головы, которую они представляют. Фосфатидилхолины являются наиболее распространенными, а голова содержит холин. В других типах различные молекулы, такие как этаноламин или серин, взаимодействуют с фосфатной группой..
Другой группой фосфоглицеридов являются плазмалогены. Липидная цепь связана с глицерином сложноэфирной связью; в свою очередь, существует углеродная цепь, связанная с глицерином посредством эфирной связи. Их довольно много в сердце и мозге.
Сфинголипиды происходят из сфингозина. Сфингомиелин является обильным сфинголипидом. Гликолипиды состоят из головок, образованных из сахаров.
Третий и последний класс липидов, которые составляют мембраны, являются стероидами. Это кольца из углерода, объединенные в группы по четыре. Холестерин — стероид, присутствующий в мембранах и особенно распространенный у млекопитающих и бактерий..
Липидные плоты
Существуют специфические зоны мембран эукариотических организмов, где сосредоточены холестерин и сфинголипиды. Эти домены также известны как рафт липид.
В этих регионах они также несут различные белки, функции которых являются клеточной передачи сигналов. Считается, что липидные компоненты модулируют белковые компоненты в рафтах.
Мембранные белки
Внутри плазматической мембраны закреплены ряд белков. Они могут быть цельными, закрепленными на липидах или расположенными на периферии..
Интегралы проходят через мембрану. Следовательно, они должны обладать гидрофильными и гидрофобными белковыми доменами, чтобы иметь возможность взаимодействовать со всеми компонентами..
В белках, которые прикреплены к липидам, углеродная цепь закреплена в одном из слоев мембраны. Белок действительно не проникает в мембрану.
Наконец, периферические не взаимодействуют напрямую с гидрофобной зоной мембраны. Напротив, они могут быть соединены посредством интегрального белка или полярными головками. Они могут быть расположены с обеих сторон мембраны.
Процент белков в каждой мембране варьируется в широких пределах: от 20% в нейронах до 70% в митохондриальной мембране, поскольку для осуществления метаболических реакций, которые там происходят, требуется большое количество белковых элементов..
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов;
- гликолипидов;
- холестерола;
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение;
- каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
- холестерол придает мембране упругость и жесткость;
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Структура цитолеммы
Почти все клеточные оболочки состоят из жиров нескольких классов. Чаще всего встречается холестерол, глико- и фосфолипиды. Последние состоят не только из липидов, но также имеют углеводное включение в виде «хвоста». Холестерол выполняет роль твердого жира, поскольку придает мембране жесткость, а также заполняет пространство между другими липидами.
Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.
В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.
Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:
- комплекс Гольджи;
- вакуоли;
- эндоплазматическая сеть;
- лизосомы.
Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости. Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным. В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала, после чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Транспорт веществ
К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.
Описаны следующие механизмы переноса веществ через плазмолемму:
- Пассивный — диффузия и осмос;
- Активный;
- Транспорт в мембранной упаковке;
Рассмотрим эти механизмы более подробно.
Пассивный
К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.
Осмосом называется диффузия через клеточную стенку молекул воды.
Полярные молекулы с большой массой транспортируются с помощью специальных белков — этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.
Активный
Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.
В мембранной упаковке
Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков — везикул, которые образует мембрана.
Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.
Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида — пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью. Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.
В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.
Экзоцитоз
Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.
Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.
Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.
Основные функции
Основным свойством плазматической мембраны является элементарное поддержание постоянства внутренней среды клетки и обеспечение ее бесперебойного функционирования. Помимо этого, она выполняет и другие функции:
Барьерная. Обеспечивает активные обменные процессы и безопасное контактирование с внешней средой. Некоторые оболочки защищают клетку от опасных компонентов, которые могут ее повредить или уничтожить. Дополнительно барьер обеспечивает избирательную проницаемость, то есть попадание за пленку каких-либо атомов будет зависеть от их размера и толщины цитолеммы. Благодаря этому, возможно сохранение целостности наружной ткани, поверхности самой пленки.
Транспортная
Имеет важное значение, ведь благодаря ей осуществляется транспорт разных веществ в клетку и выделяются продукты распада из нее. Помимо этого, способность переносить конкретные компоненты осуществляет поддержание оптимального кислотно-щелочного равновесия, а также ионного состава
Последнее важно для обработки некоторых ферментов. Транспорт может быть пассивным и активным. Первый не требует затрат энергии, происходит медленно, второй сопровождается значительными энергетическими потерями, но протекает быстро.
Энергетическая. Также играет важную роль. Структурные особенности клетки не имеют значения, поскольку в каждой плазмалемме имеются белки, отвечающие за перенос энергии и входящие в состав специальных систем для обеспечения этого процесса. При снижении их концентрации происходит нарушение метаболизма, провоцирующее другие отрицательные изменения.
Рецепторная. Во многом зависит от количества интегральных белков в оболочке. Если их недостаточно, клетка не в состоянии воспринимать сигналы, теряется способность узнавания того или иного импульса, а также главная особенность — реакция, возникающая в ответ на изменения на поверхности мембраны.
В отличие от других способностей оболочки, рецепторная играет определяющую роль. Многие гормоны, циркулирующие в крови человека, животного и других организмов, способны воздействовать только на те частицы, в которых имеются специальные белки, выполняющие рецепторную функцию. Если в плазмолемме их нет, все процессы нарушаются. Дополнительно такие протеины могут участвовать в проведении нервного импульса, связываясь с нейромедиаторами.
История исследования[ | код]
В 1925 году Эверт Гортер и Франсуа Грендель (1897—1969) с помощью осмотического «удара» получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.
Эксперименты с искусственными билипидными плёнками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Джеймс Даниэлли и Хью Даусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.
Но постепенно накапливались аргументы против «бутербродной модели»:
- накапливались сведения о глобулярности плазматической мембраны;
- оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
- плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
- «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
- количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.
Всё это привело к созданию в 1972 году С. Дж. Сингером и Г. Л. Николсоном жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.
Избирательная проницаемость[ | код]
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала, после чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Органеллы клетки
Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:
- Плазматическая мембрана.
- Ядро и ядрышки с хромосомным материалом.
- Цитоплазма с включениями.
- Лизосомы.
- Митохондрии.
- ЭПС (эндоплазматический ретикулум).
- Комплекс Гольджи.
- Рибосомы.
- Вакуоли и хлоропласты, если клетка растительная.
Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.
Жидкостно-мозаичная модель строения
Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).
Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно «гулять» по мембране, меняя местоположение.
Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.
Функции
В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.
Роль плазмалеммы:
- Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
- Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
- Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
- Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
- Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.
Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.
Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.
Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.