Матричный характер реакции биосинтеза. биосинтез белка и нуклеиновых кислот

Содержание:

Генетическая информация

Население Земли составляет более 7,6 млрд.человек, но найти одинаковых людей просто невозможно. Каждый человек обладает уникальными особенностями, которые сформировались в процессе его развития.  У любого организма есть свой генотип, состоящий из определенного набора генов, которые определяют свойства организма или признаки.Все эти факторы являются решающими при формировании и развитии живых существ.

Носителем генетической информации считаются нуклеиновые кислоты. Подробно мы с ними знакомились в  5 уроке «Химический состав клетки».

На молекуле ДНК осуществляется хранение генетической информации, которая записана на ней в виде последовательности нуклеотидов.

Определенный участок ДНК, который выполняет функцию хранения генетической информации,получил название ген.

Информация о синтезе определенного вида белков записана на ДНК в виде сообщений, закодированных последовательностью нуклеотидов. Такие зашифрованные сообщения получили название генетического кода организма.

Генетический код разных организмов обладает рядом общих свойств. Остановимся подробнее на каждом из них.

1. Триплетность – каждая аминокислота кодируется сочетанием из трех расположенных нуклеотидов, получивших название кодон или триплет. Соответственно, единицей генетического кода будет триплет.

Мы уже знаем, что генетическая информация организма записана на молекуле ДНК посредством сочетания четырех нуклеотидов – аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Нетрудно посчитать, что число возможных комбинаций из четырех нуклеотидов по три составит 64, этого сочетания вполне достаточно для кодирования 20 аминокислот, входящих в состав белка. Вспомнить строение белка вам поможет  урок 5 «Химический состав клетки». В настоящее время установлены кодоны для всех известных аминокислот и составлена таблица генетического кода. В следующем пункте остановимся подробнее на правилах пользования данной таблицы и решении задач по расшифровке генетического кода.

2. Код является множественным, или «вырожденным», в таком случае одна и та же аминокислота способна шифроваться несколькими триплетами. Избыточность генетического кода имеет значение для повышения надежности передачи генетической информации.

Специфичность генетического кода заключается в том, что каждый триплет шифрует только одну аминокислоту.

4. Код считается неперекрывающимся, при этом один и тот же нуклеотид не способен содержаться в составе двух рядом расположенных триплетов.

5. В генетическом коде отсутствуют запятые, то есть если произойдет выпадение одного нуклеотида, его место займет ближайший нуклеотид из соседнего кодона, благодаря чему изменится весь порядок считывания. Данный сбой приводит к появлению различных мутаций на генном уровне. Однако, молекула ДНК весьма длинная и складывается из миллионов нуклеотидных пар, поэтому генетическая информация о структуре белка должна быть разграничена. И действительно, существуют триплеты-инициаторы синтеза белковой молекулы и триплеты, которые прекращают синтез белка. Данные кодоны служат своеобразными знаками препинания генетического кода.

6. Нуклеотидный код является единым для всех живых организмов, в этом проявляется его универсальность.  Это свойство кода считается убедительным доказательством общности происхождения живой природы.

Из всего вышесказанного можно сделать вывод о том, что такое генетической информации.

Генетической информации присущи определенные свойства:

Перевод

Иллюстрирует процесс трансляции, показывающий цикл спаривания кодон-антикодон тРНК и включение аминокислоты в растущую полипептидную цепь рибосомой.

Рибосома на цепи мРНК с прибывающими тРНК, которые выполняют спаривание кодонов и антикодонов, доставляют свою аминокислоту в растущую полипептидную цепь и уходят. Демонстрирует действие рибосомы как биологической машины, которая в наномасштабе выполняет трансляцию. Рибосома движется вдоль зрелой молекулы мРНК, включающей тРНК и производящей полипептидную цепь.

Во время трансляции рибосомы синтезируют полипептидные цепи из матричных молекул мРНК. У эукариот трансляция происходит в цитоплазме клетки, где рибосомы либо свободно плавают, либо прикрепляются к эндоплазматической сети . У прокариот, у которых отсутствует ядро, процессы как транскрипции, так и трансляции происходят в цитоплазме.

Рибосомы — это сложные молекулярные машины , состоящие из смеси белка и рибосомной РНК , организованных в две субъединицы (большую и малую), которые окружают молекулу мРНК. Рибосома считывает молекулу мРНК в направлении 5′-3 ‘и использует ее в качестве матрицы для определения порядка аминокислот в полипептидной цепи. Чтобы транслировать молекулу мРНК, рибосома использует небольшие молекулы, известные как передаточные РНК (тРНК), для доставки правильных аминокислот к рибосоме. Каждая тРНК состоит из 70-80 нуклеотидов и принимает характерную структуру клеверного листа из-за образования водородных связей между нуклеотидами внутри молекулы. Существует около 60 различных типов тРНК, каждая тРНК связывается с определенной последовательностью из трех нуклеотидов (известной как кодон ) в молекуле мРНК и доставляет определенную аминокислоту.

Рибосома первоначально прикрепляется к мРНК в стартовом кодоне (AUG) и начинает транслировать молекулу. Нуклеотидная последовательность мРНК читается триплетами — три соседних нуклеотида в молекуле мРНК соответствуют одному кодону. Каждая тРНК имеет открытую последовательность из трех нуклеотидов, известную как антикодон, которые комплементарны по последовательности конкретному кодону, который может присутствовать в мРНК. Например, первый встреченный кодон — это стартовый кодон, состоящий из нуклеотидов AUG. Правильная тРНК с антикодоном (комплементарная 3-нуклеотидная последовательность UAC) связывается с мРНК с помощью рибосомы. Эта тРНК доставляет правильную аминокислоту, соответствующую кодону мРНК, в случае стартового кодона это аминокислота метионин. Следующий кодон (соседний со стартовым кодоном) затем связывается правильной тРНК с комплементарным антикодоном, доставляя следующую аминокислоту к рибосоме. Затем рибосома использует свою ферментативную активность пептидилтрансферазы, чтобы катализировать образование ковалентной пептидной связи между двумя соседними аминокислотами.

Затем рибосома перемещается вдоль молекулы мРНК к третьему кодону. Затем рибосома высвобождает первую молекулу тРНК, так как только две молекулы тРНК могут быть объединены одной рибосомой за один раз. Выбирается следующая комплементарная тРНК с правильным антикодоном, комплементарным третьему кодону, доставляющая следующую аминокислоту к рибосоме, которая ковалентно присоединена к растущей полипептидной цепи. Этот процесс продолжается, когда рибосома движется вдоль молекулы мРНК, добавляя к полипептидной цепи до 15 аминокислот в секунду. За первой рибосомой до 50 дополнительных рибосом могут связываться с молекулой мРНК, образуя полисому , что позволяет одновременно синтезировать несколько идентичных полипептидных цепей. Обрыв растущей полипептидной цепи происходит, когда рибосома встречает стоп-кодон (UAA, UAG или UGA) в молекуле мРНК. Когда это происходит, тРНК не может распознать ее, и фактор высвобождения индуцирует высвобождение полной полипептидной цепи из рибосомы. Доктор Хар Гобинд Хорана , ученый из Индии, расшифровал последовательности РНК примерно для 20 аминокислот. Он был удостоен Нобелевской премии в 1968 году вместе с двумя другими учеными за свою работу.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Трансляция

Термином трансляция (перевод) в биологии обозначают реакции, в результате которых в рибосомах с использованием в качестве матрицы иРНК осуществляется синтез полипептидной цепи. Полипептидная цепь удлиняется в процессе синтеза путем последовательного присоединения отдельных аминокислотных остатков. Для того чтобы понять, каким образом осуществляется образование пептидной связи между соответствующими аминокислотами, необходимо рассмотреть структуру рибосом и транспортных РНК (тРНК), участвующих с процессе трансляции.

Каждая рибосома состоит из двух субъединиц: большой и малой, которые могут отделяться друг от друга. В состав каждой субъединицы входит рибосомная РНК и белок. Некоторые рибосомные белки выполняют каталитические функции, то есть являются ферментами. Основная функция малой субъединицы — «расшифровка» генетической информации. Она связывает иРНК и тРНК, несущие аминокислоты. Функция большой субъединицы — образование пептидной связи между аминокислотами, принесенными в рибосому двумя соседними молекулами тРНК.

Транспортная РНК. Молекулы транспортных РНК невелики, в их состав входят 70-90 нуклеотидов. Функция тРНК заключается в том, чтобы в ходе процесса синтеза полипептидной цепи переносить на рибосомы определенные аминокислоты, при этом каждая аминокислота переносится соответствующей тРНК. Все молекулы тРНК способны образовывать характерную конформацию — конформацию клеверного листа. Такая конформация молекулы тРНК возникает потому, что в ее структуре имеется значительное количество нуклеотидов (по 4-7 в одном участке), комплементарных друг другу. Внутримолекулярное спаривание таких нуклеотидов за счет образования водородных связей между комплементарными основаниями и приводит к образованию такой структуры. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен кодону иРНК, кодирующему аминокислоту. Этот триплет различен для тРНК, переносящих различные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК. Он называется антикодоном.

У основания клеверного листа находится участок, в котором связывается аминокислота. Таким образом, молекула тРНК не только переносит определенную аминокислоту, она имеет в своей структуре запись о том, что она переносит именно эту аминокислоту, причем эта запись сделана на языке генетического кода.

 В демонстрационной версии представлено только начало лекции. Полная версия доступна слушателям наших курсов.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию — удвоение генетического материала;
  • транскрипцию — синтез рибонуклеиновых кислот;
  • трансляцию — производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на «размножении» генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем «ДНК-РНК-белок» и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с «исходным образцом». Основой такого сопряжения является фундаментальный принцип комплементарности.

Роль синтеза белка в болезни

Многие заболевания вызваны мутациями в генах из-за прямой связи между нуклеотидной последовательностью ДНК и аминокислотной последовательностью кодируемого белка. Изменения первичной структуры белка могут привести к неправильной укладке белка или нарушению его функции. Мутации в одном гене были идентифицированы как причина множества заболеваний, включая серповидно-клеточную анемию , известную как нарушения одного гена.

Серповидноклеточная анемия

Сравнение здорового человека и человека, страдающего серповидно-клеточной анемией, иллюстрирующее различные формы эритроцитов и различный кровоток в кровеносных сосудах.

Серповидно-клеточная анемия — это группа заболеваний, вызываемых мутацией в субъединице гемоглобина, белка, обнаруженного в красных кровяных тельцах, ответственных за транспортировку кислорода. Самая опасная серповидно-клеточная анемия известна как серповидноклеточная анемия. Серповидно-клеточная анемия является наиболее распространенным гомозиготным рецессивным заболеванием с одним геном , что означает, что больной должен иметь мутацию в обеих копиях пораженного гена (по одной унаследованной от каждого родителя), чтобы страдать от болезни. Гемоглобин имеет сложную четвертичную структуру и состоит из четырех полипептидных субъединиц — двух субъединиц A и двух субъединиц B. Пациенты, страдающие серповидно-клеточной анемией, имеют миссенс-мутацию или мутацию замещения в гене, кодирующем полипептидную цепь B-субъединицы гемоглобина. Миссенс-мутация означает, что нуклеотидная мутация изменяет общий триплет кодонов таким образом, что другая аминокислота сочетается с новым кодоном. В случае серповидно-клеточной анемии наиболее распространенной миссенс-мутацией является мутация одного нуклеотида от тимина до аденина в гене субъединицы B гемоглобина. Это изменяет кодон 6, кодирующий аминокислоту глутаминовую кислоту, на кодон валина.

Это изменение первичной структуры полипептидной цепи субъединицы В гемоглобина изменяет функциональность многосубъединичного комплекса гемоглобина в условиях низкого содержания кислорода. Когда красные кровяные тельца выгружают кислород в ткани тела, мутировавший белок гемоглобина начинает слипаться, образуя полутвердую структуру внутри красных кровяных телец. Это искажает форму красных кровяных телец, в результате чего приобретает характерную «серповидную» форму, и снижает гибкость клеток. Эти жесткие, искаженные эритроциты могут накапливаться в кровеносных сосудах, создавая закупорку. Блокировка препятствует притоку крови к тканям и может привести к их отмиранию, что причиняет человеку сильную боль.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину — цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции — УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Функциональные единицы в составе ДНК

Совокупность всего генетического материала организма называют геномом. Таким образом, ДНК – это носитель генома. В состав генома входят не только структурные гены, кодирующие те или иные белки. Существенная часть ДНК содержит участки, имеющие разное функциональное назначение.

Так, в составе ДНК присутствуют:

  • регуляторные последовательности, кодирующие особые РНК, например, генетические переключатели и регуляторы экспрессии структурных генов;
  • элементы, регулирующие процесс транскрипции – начальный этап биосинтеза белка;
  • псевдогены – своего рода «ископаемые гены», утратившие вследствие мутаций способность кодировать белок или транскрибироваться;
  • мобильные генетические элементы – участки, способные перемещаться внутри генома, например транспозоны («прыгающие гены»);
  • теломеры – особые области на концах хромосом, благодаря которым ДНК в хромосомах защищена от укорачивания с каждым актом репликации.

Сущность генетического кода

Итак, ДНК – это информационная матрица, на которой сохраняется информация о необходимых организму для роста и жизнедеятельности белках. Белки строятся из аминокислот, ДНК (и РНК) – из нуклеотидов. Определенным нуклеотидным последовательностям молекулы ДНК соответствуют определенные последовательности аминокислот тех или иных белков.

Структурных единиц белка – канонических аминокислот – в клетке 20 видов, а нуклеотидов в составе ДНК – 4 вида. Так что каждая аминокислота записана на ДНК-матрице как сочетание трех нуклеотидов – триплет, ключевыми компонентами которого являются азотистые основания. Такой принцип соответствия называется генетическим кодом, а триплеты оснований – кодонами. Ген – это последовательность кодонов, содержащая запись какого-либо белка и некоторые служебные сочетания оснований – старт-кодон, стоп-кодон и прочие.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза — расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза — «зашивает» разрывы между фрагментами Оказаки;
  • праймаза — синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки — стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы — синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) — в обратном направлении и отдельными фрагментами, названными «Оказаки».

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Матричный характер реакции биосинтеза

Термин «матрица» употребляется, когда речь идет об отливке или повторения формы монет, медальонов, типографского шрифта. Форма для отливки точно копирует все детали, не упуская ни малейшей мелочи и не допуская лишних фрагментов. Матричный синтез похож на этот процесс: новые молекулы белка создаются по плану, который заложен в структуре ДНК.

Реакции матричного синтеза позволяют сохранять определенную последовательность мономерных звеньев в полимерной, длинной цепочке белка. Роль матрицы выполняет ДНК, информация с которой попадает на и- РНК. Полученные мономеры «сходят с конвейера» и собираются в одно место в клетке. За счет катализаторов, ускоряющих процесс, он проходит быстро и четко, без сбоев.

Расположение нуклеотидов ДНК и аминокислот белка в строгой последовательности, помогает фиксировать их на матрице, а затем собирать в белковую макромолекулу, «сшивая» определенные участки. Готовый полимер сходит с матрицы, и начинается синтез новой молекулы. 

Важно! Благодаря матричному синтезу возможно воспроизведение себе подобных клеток и организмов. Он помогает сохранять уникальный наследственный материал каждого организма

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент «дочерней» цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Ген и его роль в биосинтезе.

Белки являются важнейшими компонентами живого не только потому, что составляют большую по массе часть клетки, но и потому, что обеспечивают ее функциональную активность и уникальность. Каждая клетка имеет набор своих специфических белков, которые характерны конкретно для этой клетки. Он отличается как от набора белков клеток других организмов, так и от набора белков, свойственных клеткам других тканей данного организма, т.к. в каждой клетке осуществляется синтез специфичных именно для нее белков. Информация о том, какие белки должны синтезироваться в клетках данного организма, сохраняется в ядре, «записана» эта инфомация в виде последовательности нуклеотидов в ДНК. Часть молекулы ДНК (участок ДНК), последовательность нуклеотидов, определяющая последовательность аминокислот в данном белке, называется геном. В молекуле ДНК в зависимости от эволюционного пути, который прошел данный организм, может содержаться от сотен до десятков тысяч генов.

8.2.3. Синтез белка window.top.document.title = «8.2.3. Синтез белка»;

Синтез белка (трансляция) является самым сложным из биосинтетических процессов: он требует очень большого количества ферментов и других специфических макромолекул, общее количество которых, видимо, доходит до трёхсот. Часть из них к тому же объединены в сложную трёхмерную структуру рибосом. Но несмотря на большую сложность синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками.

Модель 8.8.
Полирибосома

В пятидесятых годах XX века было установлено, что синтез белка происходит в рибонуклеопротеиновых частицах, называющихся рибосомами. Диаметр рибосомы бактерии E. coli составляет 18 нм, а их общее количество – десятки тысяч в клетке. Рибосомы эукариот несколько крупнее (21 нм). Сам процесс протекает в пять этапов.

  1. Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определённой т-РНК, используя энергию АТФ. Реакция катализуется специализированными ферментами, требующими присутствия ионов магния.

  2. Инициация белковой цепи. и-РНК, содержащая информацию о данном белке, связывается с малой частицей рибосомы и с инициирующей аминокислотой, прикреплённой к соответствующей т-РНК. т-РНК комплементарна с находящимся в составе и-РНК триплетом, сигнализирующим о начале белковой цепи.

  3. Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определённое положение при помощи соответствующей т-РНК. В настоящее время генетический код полностью расшифрован, то есть всем аминокислотам поставлены в соответствие триплеты нуклеотидов. Элонгация осуществляется при помощи белков цитозоля (так называемые факторы элонгации).

  4. Терминация. После завершения синтеза цепи, о чём сигнализирует ещё один специальный кодон и-РНК, полипептид высвобождается из рибосомы.

  5. Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определённую пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метильных и других групп и т. п.


Рисунок 8.2.3.1.Генетический код

Генетический код обладает рядом особенностей. Во-первых, в коде отсутствуют «знаки препинания», то есть сигналы, показывающие начало и конец кодонов. Во-вторых, 3 нуклеотидных триплета (УАГ, УАА, УГА) не соответствуют никакой аминокислоте, а обозначают конец полипептидной цепи, а кодон АУГ сигнализирует о начале цепи либо (если он в середине последовательности) об аминокислоте метионине. Многие аминокислоты могут кодироваться несколькими различными кодонами. Все кодоны аминокислот одинаковы у всех изученных организмов: от вируса до человека. Создаётся впечатление, что все организмы на Земле происходят от единого генетического предка. Впрочем, в последнее время в митохондриях клеток человека были обнаружены кодоны, не совпадающие с «нормальным» словарём. Их наличие представляет собой загадку для ученых.

Синтез белка требует больших затрат энергии – 24,2 ккал/моль. После окончания синтеза белок при помощи специального полипептидного лидера доставляется к месту своего назначения.

Синтез белка контролируют гены-операторы. Совокупность рабочих генов – операторов и структурных генов – называется оперон. Опероны не являются самостоятельной системой, а «подчиняются» генам-регуляторам, отвечающим за начало или прекращение работы оперона. Свой контроль гены-регуляторы осуществляют при помощи специального вещества, которое они при необходимости синтезируют. Это вещество реагирует с оператором и блокирует его, что влечёт за собой прекращение работы оперона. Если же вещество реагирует с небольшими молекулами – индукторами, это будет являться сигналом к возобновлению работы системы.

Модель 8.9.
Синтез белка

Модель оперонов была разработана на микроорганизмах, но она соответствует и принципу работы генома эукариот. У последних гены образуют сложные системы, называемые супергенами, которые могут одновременно кодировать множество идентичных друг другу молекул белка.


Рисунок 8.2.3.2.Синтез белка у прокариот и эукариот

Все многоклеточные организмы развиваются из одной-единственной клетки – зиготы. Процесс дифференцировки клеток, видимо, связан с управлением синтезом белка генами-регуляторами, но каким конкретно образом осуществляется это управление – пока остаётся неясным.

Транскрипция — первый этап биосинтеза белка

Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.

Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.

Спе­ци­аль­ный фер­мент на­хо­дит ген и рас­кру­чи­ва­ет уча­сток двой­ной спи­ра­ли ДНК. Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь РНК мат­ри­цы от­хо­дит от мо­ле­ку­лы, а двой­ная цепь ДНК вос­ста­нав­ли­ва­ет­ся. Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, то есть до­хо­дит до участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, то есть от мо­ле­ку­лы ДНК. Таким об­ра­зом, тран­скрип­ция — это пер­вый этап био­син­те­за белка. На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путём син­те­за ин­фор­ма­ци­он­ной РНК.

Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.

После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.

Транскрипция пошагово:

  1. РНК полимераза садится на 3’ конец транскрибируемой цепи ДНК.
  2. Начинается элонгация — полимераза «скользит» по ДНК в сторону 5’ конца и строит цепь иРНК, комплементарную ДНК.
  3. Полимераза доходит до конца гена, «слетает» с ДНК и отпускает иРНК.
  4. После этого происходит процесс созревания РНК — процессинг.
Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.

Транскрипция

Синтез белка осуществляется на рибосомах, расположенных в цитоплазме клетки. В то же время информация о последовательности аминокислот в белке хранится в ДНК. Оказалось, что во время или перед началом синтеза определенного белка в ядре образуется так называемая матричная или информационная РНК, являющаяся посредником, переносящим информацию от ДНК к рибосомам. Молекула информационной РНК (иРНК) синтезируется с использованием в качестве матрицы определенного участка ДНК (гена). Затем молекула иРНК покидает ядро и перемещается в цитоплазму. Связываясь с рибосомами, она, в свою очередь, служит матрицей, на которой происходит синтез белка.

Синтез иРНК осуществляется в ядре с помощью фермента, называемого ДНК-зависимой РНК-полимеразой. Вновь синтезированная иРНК имеет нуклеотидный состав, коплементарный нуклеотидному составу использованной ДНК с той лишь разницей, что остаткам тимина в ДНК-матрице соответствуют остатки урацила в синтезированной иРНК. Таким образом, информация, имеющаяся в гене, переписывается на иРНК. Этот процесс называется транскрипцией (переписыванием).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector