Человек генно-модифицированный / homo genere mutatio

Содержание:

Зарождение генетики

Какого цвета твои глаза, волосы, кожа? Почему у тебя такие же вьющиеся волосы, как и у твоей мамы? Почему ты очень похож на своих родителей, но не являешься их полной копией? Почему листики одного дерева такие разные? Ответы на все эти вопросы дает один из самых интересных разделов биологии — генетика.

Первые шаги

В течение очень длительного периода людям была непонятна причина схожести родственных организмов. Ситуация изменилась в 60-х гг. XX в., когда австрийский биолог и ботаник, монах августинского монастыря в Брно Грегор Мендель начал проводить опыты на горохе в монастырском саду. Он хотел узнать, каким образом определенные признаки живых существ передаются из одного поколения в другое.

Грегор Мендель

Следующий научный шаг в изучении генетики был сделан в 1909 г. датским биологом профессором Вильгельмом Иогансеном, который ввел и объяснил термин «ген». Несколько позже, в 1923 г., американский биолог Томас Морган доказал, что гены находятся в хромосомах, и сформулировал хромосомную теорию наследственности. С тех пор генетика стала развиваться на уровне гена.

Опыты Менделя

Менделя интересовали высота растения, цвет цветков и форма горошин. Занимаясь перекрестным опылением гороха, он тщательно анализировал получаемые результаты и наблюдал, какие именно признаки и в каком поколении передавались по наследству. Причем каждый раз в перекрестном опылении участвовали специально отобранные растения с теми признаками, которые, как думал Мендель, обязательно должны передаться последующему поколению.

В чем заключалась суть экспериментов биолога?

Одним из признаков, которые исследовал Мендель, был цвет цветков гороха. В своих первых опытах он отобрал только те сорта, которые цветут белыми и красными цветками. Мендель был уверен, что после скрещивания в первом поколении (поколение F1) будут растения как с белыми, так и с красными цветками. Каково же было его удивление, когда абсолютно все цветки оказались красными!

Такой результат не только не остановил ученого, но и заставил продолжить эксперименты. Мендель опылил цветки полученных растений первого поколения их же пыльцой и ожидал совершенно логичного результата — красных цветков. Но снова его предположения не оправдались: во втором поколении (поколение F2) 75% всех цветков были красными, а оставшиеся 25% — белыми!

В чем причина?

Такой неожиданный результат вовсе не огорчил ученого. Благодаря полученным данным он пришел к выводу о том, что у каждого растения не один, а два гена, которые принимают участие в передаче определенных признаков. Он назвал красный цвет гороха главным, доминантным, а белый — рецессивным, уступающим признаком.

При наличии двух разных генов (например, красного и белого), определяющим при цветении будет доминантный ген. Поэтому, если у растения есть оба гена (красный и белый), на цвет цветка будет влиять доминантный ген красного цвета. А тот факт, что среди дочерних растений могут быть и цветки белого цвета, говорит лишь о наличии этого гена у растения.

Роль в клетке

Конечно, одна, даже большая двойная спираль не способна вместить в себя весь объем информации, необходимый для такого сложного проекта, как человеческое тело. Возможно, поэтому эти цепочки объединены в пары, что делает их похожими на букву «Х». Хромосомы, в свою очередь, тоже парные, и их у человека 46 пар.

Помимо того, что хромосома содержит в себе подробную инструкцию по функционированию клетки, она же путем активации актуальных моменту генов провоцирует клетку вырабатывать определенные белки с самыми различными свойствами. Например, в борьбе с опухолями активно участвует ген старости, который старит ее недоброкачественные клетки и не дает им бесконечно делиться.

Лечение хронической почечной недостаточности

Лечение хронической почечной недостаточности направлено на достижение стойкой ремиссии, поскольку добиться абсолютного выздоровления современная медицина не способна. Но благодаря своевременной терапии удается сгладить симптоматику, отсрочить появление осложнений и существенно улучшить качество жизни пациента.

Лечение хронической почечной недостаточности должно начинаться с устранения основной причины патологии. Усилия врачей направлены на компенсацию признаков сахарного диабета, гломерулонефрита, поликистоза и других аутоиммунных нарушений. В приоритете – комплексный подход к лечению, который включает:

  • Диетотерапию. Ограничение количества белка в пище, уменьшение потребляемой соли вплоть до перехода на бессолевую диету. Рекомендуется делать упор на незаменимые аминокислоты, которые содержатся в орехах, бобах, молочных продуктах, зерновых, сушеных финиках и говядине.
  • Курсы плазмафереза – очищение плазмы методом центрифугирования, которое позволяет уменьшить концентрацию токсических веществ, антител, белков и липидов.
  • Регулярный гемодиализ – сеансы очищения крови «искусственная почка» показаны пациентам с хронической почечной недостаточностью при неэффективности основного лечения.

Большая роль отводится симптоматическому лечению, которое позволяет облегчить протекание болезни и улучшить самочувствие пациента. Больным назначают препараты, которые восполняют дефицит витамина D, контролируют артериальное давление, корректируют кислотно-щелочной баланс, борются с олигурией.

В некоторых случаях для лечения хронической почечной недостаточности показаны дробные переливания эритроцитной массы. Методика позволяет повысить уровень гемоглобина в крови, уменьшить проявления анемии, устранить последствия внутренних кровотечений. По достижении ремиссии пациентам с хронической почечной недостаточностью показано санаторно-курортное лечение.

Что такое мейоз

Второй способ деления эукариотической клетки — мейоз. Во время такого процесса деления клетки получаются дочерние клетки, которые называются гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза. 


 Схема мейоза‍

Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм. 

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n). 

Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами. 

Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:

  • Профаза I (2n4c) — занимает 90% времени. Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c. Происходит конъюгация хромосом: гомологичные (парные) хромосомы сближаются и скручиваются, образуя структуры из двух соединённых хромосом — такие структуры называют тетрады, или биваленты. Затем гомологичные хромосомы начинают расходиться. При этом происходит кроссинговер — обмен участками между гомологичными хромосомами. В результате этого процесса создаются новые комбинации генов в потомстве. Растворяется ядерная оболочка. Разрушаются ядрышки. Формируется веретено деления.
  • ‍Метафаза I (2n4c) — биваленты выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.
  • Анафаза I (хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c) — гомологичные хромосомы отходят к разным полюсам, при этом сестринские хроматиды всё ещё соединены центромерой. За счёт случайной ориентации центромер распределение хромосом к полюсам также случайно, так как нити веретена прикрепляются произвольно. 
  • Телофаза I (1n2c) — происходит деспирализация хромосом. Если интерфаза между делениями длительна, может образоваться новая ядерная оболочка.


Мейоз I

Мейоз II подразделяется на четыре такие же фазы: 

  • Профаза II (1n2c) — восстанавливается новое веретено деления, ядерная мембрана растворяется, если образовывалась в телофазе I.
  • Метафаза II (1n2c) — хромосомы выстраиваются в экваториальной части веретена, а нити веретена прикрепляются к центромерам.
  • Анафаза II (хромосомный набор у каждого полюса — 1n1c, в клетке — 2n2c) — центромеры расщепляются, двухроматидные хромосомы разделяются, и теперь к каждому полюсу движется однохроматидная хромосома. 
  • Телофаза II (1n1c) — происходит деспирализация хромосом, формирование ядерных оболочек и разделение цитоплазмы; в результате двух делений из диплоидной материнской клетки получается четыре гаплоидных дочерних клетки. 


Мейоз II

Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных  и спор у растений. 

Что дальше?

Базовое редактирование

Перемещение генов

Спроектированное перемещение генов может доставить определённые гены целым популяциям организмов. Например, таким образом можно сделать москитов бесплодными и сократить количество заболеваний, которые они распространяют. Но эта технология очень противоречива, так как может иметь широкомасштабные непреднамеренные экологические последствия.

Редактирование эпигенома

Иногда нет цели полностью удалить или заменить ген – необходимо просто ослабить или усилить его активность. Сейчас учёные работают над способностью Crispr выполнять такие задачи, предоставляя его молекулам больше возможностей, чем раньше.

Оригинал: Gene editing – and what it really means to rewrite the code of life.

Перевод: Кира Луппова.

Подписывайтесь на страницу СПИД.ЦЕНТРа в фейсбуке

Назначение:

1.Обеспечение компенсаторной функции почек, фильтрация крови от токсических соединений и конечных продуктов метаболизма. Гемодиализ при хронической недостаточности проводят трижды за неделю, но нарастание интоксикации – основание для более частого проведения процедуры. При крайне тяжести, диализ выполняют до конца жизни, или пока не трансплантируют здоровую почку. 2. Почечная недостаточность, как осложнение острого гломерулонефрита, пиелонефрита. Цель назначения процедуры – вывести излишек жидкости из организма, устранить отеки, эвакуировать продукты токсического свойства. 3. Дисбаланс электролитов в крови. Указанное состояние происходит вследствие массивных ожогов, перитонита, обезвоживания, лихорадочных явлений. Гемодиализ позволяет вывести чрезмерную концентрацию ионов одного вида, заместив их другими. Также показанием для рассматриваемой процедуры выступает избыток жидкости в организме, что приводит к отеку оболочек головного мозга, сердца, легких. Диализ помогает сократить отечность и снизить уровень артериального давления. Процедура гемодиализа проводится на АИП с помощью одноразовых расходных материалов, к которым относятся диализаторы, кровопроводящие магистрали, фистульные иглы, катетеры, диализные концентраты.

Причины ХПН

Дисфункции мочевыделительной системы могут провоцировать другие острые и хронические патологии:

  • Гломерулонефрит – воспаление клубочковых элементов почек аутоиммунной природы.
  • Поликистоз – множественные доброкачественные опухоли, которые поражают почечную ткань.
  • Сахарный диабет – эндокринное заболевание, оказывающее влияние на мочевыделительную систему.
  • Высокое артериальное давление – выступает предпосылкой хронической почечной недостаточности из-за повышенной нагрузки на органы выделения.
  • Закупорка почечных протоков, вызванная патологическими состояниями – увеличением простаты, опухолями в соседних тканях, мочекаменной болезнью.

Хроническая почечная недостаточность также развивается по таким причинам:

Отделение, в котором лечат почечную недостаточность

Жители города Москвы для получения направления и прикрепления к гемодиализному центру должны пройти консультацию у главного внештатного специалиста – нефролога Департамента здравоохранения г. Москвы в консультативно-диагностическом отделении Городской клинической больницы №52.

Жители субъектов РФ могут поступить на лечение в Дневной стационар НИИ урологии и интервенционной радиологии имения Н.А. Лопаткина по направлению формы 057/у.

Платные медицинские услуги предоставляются в виде комплексной программы медицинской помощи, по желанию пациента, или гражданам, обеспечение которых бесплатными медицинскими услугами не предусмотрено законодательством Российской Федерации (гражданам иностранных государств, лицам без гражданства).

Позвоните нам сегодня, чтобы мы смогли Вам помочь!

Москва, 8 (499) 110 — 40 — 67

Как викинги червей победили

Примерно так же развилась наследственная предрасположенность к эмфиземе легких — заболеванию, при котором альвеолы теряют эластичность, газообмен ухудшается и начинается дыхательная недостаточность. Диагноз распространен среди скандинавов и практически не встречается у выходцев из Азии.

Объяснение простое: мутация, повышающая риск развития этой болезни, впервые появилась у викингов как побочный эффект защиты организма от гельминтов. К такому выводу пришли британские исследователи, изучившие палеогенетические данные и ДНК современных людей.

Археологические раскопки древних скандинавских поселений показывают: викинги часто страдали от паразитов, в том числе шистосом — плоских червей, которые обитают в венозной крови и повреждают внутренние органы. Заражение, как правило, происходит через воду — когда человек купается или пьет.

Вероятно, выходом для древних скандинавов стала мутация гена альфа-1-антитрипсина, которая со временем все чаще встречалась в их популяции. Этот белок защищает ткани от повреждения собственным ферментом — трипсином.

Эта мутация сопутствует варианту гена иммуноглобулина Е, который кодирует его изоформу IgE-tp. Соединяясь с мутантным антитрипсином, она не разрушается под действием ферментов, вырабатываемых паразитическими червями. А вот обычная молекула иммуноглобулина E не может им противостоять.

В лабораторных условиях исследователи заражали клетки крови шистосомами. Среди них были биологические образцы пациентов с диагностированной эмфиземой легких и здоровых людей. Как и ожидалось, первые успешнее противостояли паразитам.

Негативные последствия вечной жизни.

У всего есть и обратная сторона. Как не хотелось бы человеку победить все болезни и жить вечно, у смерти тоже есть свои важные функции:

— Естественный отбор и сохранение самого жизнеспособного ДНК.

— Регулирование населенности планеты.

— Преобразования одних биологических организмов в питательную среду для других биологических организмов.

— Смерть придаёт жизни особую ценность.

— Так же смерть является краеугольным камнем всех религиозных учений.

Если люди перестанут умирать, то относительно скоро они заполнят все свободное место на планете, а ещё раньше полностью истощат её ресурсы и вымрут от голода, и разрушения окружающей среды. Кто тогда будет достоин, что бы его жизнь была продлена, а кто нет – это очень сложный этический вопрос, который нам придется решать, когда мы добьёмся успехов в достижении вечной жизни.

Как лечить наследственные заболевания и как с ними жить?

Раньше наследственные заболевания были неизлечимы. Сейчас это по-прежнему остаётся проблемой для многих заболеваний, но для некоторых из них методы лечения уже найдены. Например, это касается болезней, связанных с нарушением метаболизма.

При большинстве наследственных нарушений обмена веществ один фермент либо вообще не вырабатывается организмом, либо вырабатывается в форме, которая не работает. Например, при отсутствии какого-либо фермента в организме могут накапливаться токсичные вещества или может не синтезироваться необходимый продукт — как при гемохроматозе 1 типа.

При этом заболевании организм поглощает слишком много железа из пищи и не может естественным образом избавиться от избытка. Это может привести к чрезмерному накоплению железа в сердце, поджелудочной железе и печени.

Лечение генетических нарушений обмена веществ следует двум общим принципам:

  • Необходимо сократить или исключить прием любой пищи или лекарств, которые не усваиваются организмом.
  • Заменить или восполнить отсутствующий или неактивный фермент для восстановления метаболизма с помощью диеты и/или лекарств.

Есть более серьезные и распространенные наследственные заболевания, которые не лечатся. Например, мековисцидоз —  скопление слизи в лёгких и в пищеварительной системе. От муковисцидоза нет лекарства, но разные методы контроля симптомов помогают предотвращать или уменьшать осложнения и облегчать жизнь с этим заболеванием.

Со временем муковисцидоз прогрессирует и может привести к летальному исходу, особенно при наличии сопутствующих инфекций. Сегодня благодаря достижениям медицины около половины людей с муковисцидозом доживают до 40 лет. Дети, рожденные с этим заболеванием в наши дни, смогут прожить ещё дольше.

Одно из самых тяжелых наследственных заболеваний, спинальная мышечная атрофия, также с недавнего времени поддается лечению с помощью генной терапии. Но доступен этот метод далеко не каждому. Препарат для лечения СМА — самый дорогой лекарственный препарат в мире.

Лечение или купирование генетических заболеваний стало возможным благодаря международному проекту «Геном человека» по изучению и картированию генов человека, произошел прорыв в диагностике и лечении наследственных заболеваний. Результаты проекта помогают не только находить гены, мутации в которых приводят к заболеваниям, но и диагностировать их с максимальной точностью.

На заметку:

Наследственные заболевания — это заболевания, обусловленные генными или хромосомными мутациями.
При совпадении у партнеров статусов носительства определенных болезней есть высокий риск рождения ребенка с наследственным заболеванием

Поэтому при планировании беременности важно пройти генетическое тестирование.
Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования. При доминантном наследовании только одна копия гена — от матери или отца — должна иметь мутацию для проявления признака или заболевания

А при рецессивном типе человек наследует две измененные копии одного и того же гена.
Большинство наследственных заболеваний неизлечимы. Течение некоторых из них можно контролировать с помощью лекарств и диеты.
Определить наличие и риск развития наследственного заболевания можно с помощью Генетического теста Атлас.

Обнаружены участки генома, связанные с тяжелым течением Covid-19

Мария Азарова, Naked Science

На протяжении коронавирусной пандемии ученых преследует вопрос: почему одни люди, заболевшие Covid-19, вовсе не испытывают симптомов и почти незаметно переносят инфекцию, а другим требуется скорая медпомощь, вплоть до реанимации и ИВЛ? Исследователи предложили достаточно гипотез, выявив десятки факторов, ответственных за тяжелое течение болезни, среди которых – принадлежность к мужскому полу, наличие хронических заболеваний, лишний вес, пожилой возраст и так далее. Теперь подтвердились давние догадки: за уязвимость к SARS-CoV-2 отвечают еще и гены.

Сотрудники Института молекулярной медицины Финляндии при Хельсинкском университете, Массачусетского технологического института и Гарварда представили некоторые выводы стартовавшего прошлой весной масштабного проекта Covid-19 Host Genomics Initiative, изучающего геном человека в контексте пандемии коронавируса и объединившего свыше трех тысяч специалистов из 25 стран. Предварительные результаты опубликованы в журнале Nature (Mapping the human genetic architecture of COVID-19).

Ученые проанализировали генетический материал 49 562 жителей 19 разных государств с подтвержденным Covid-19 и двух миллионов здоровых людей, данные о которых брали из многочисленных биобанков, клинических исследований и от генетических компаний, таких как 23andMe. Целью было определить, какие фрагменты ДНК человека коррелируют с тяжелой формой коронавирусной инфекции.

В итоге удалось выявить 13 значимых для всего генома локусов – местоположений определенного гена на спирали ДНК, – которые связаны с инфекцией или тяжелыми проявлениями COVID-19. Некоторые из них соответствуют легочным или аутоиммунным и воспалительным заболеваниям, для которых ученые ранее показали связь с Covid-19. Из 13 локусов два чаще встречались среди пациентов восточноазиатского или южноазиатского происхождения, нежели среди населения Европы.

Исследователи обращают внимание на локус гена FOXP4, вариации которого связаны как с раком легких, так и с тяжелой формой Covid-19. Следовательно, его ингибирование может быть частью лечения

Варианты генов ABO, SLC6A20, TYK2 и DPP9 тоже коррелировали с течением инфекции. Другие гены, по словам ученых, находятся на пока не исследованных локусах третьей и других хромосом, их роль еще не определили.

Конечно, не каждый идентифицированный локус отвечал за уязвимость к коронавирусу. Поэтому потребуется время, чтобы найти окончательное объяснение тому, как соотносятся вирус и ДНК человека. По мере поступления новой информации авторы проекта планируют обновлять результаты, а в итоге Covid-19 Host Genomics Initiative должно помочь определить цели для будущих методов лечения и продемонстрировать силу генетических исследований в изучении инфекционных заболеваний.

Портал «Вечная молодость» http://vechnayamolodost.ru

Приведёт ли это всё к «редактированию» будущих детей?

Огромные усилия в медицине направлены на то, чтобы исправить дефектные гены у детей и взрослых. Но некоторые исследования показали, что есть возможность редактировать гены у эмбрионов. В 2017 году учёные, созванные Национальной Академией Наук и Национальной Академией Медицины США, сдержанно поддержали редактирование генома у человеческих эмбрионов для предотвращения самых серьёзных заболеваний, но только один такой опыт оказался безопасным.

Любые изменения на эмбриональной стадии повлияют на все клетки человека и будут переданы его детям, поэтому очень важно избегать вредоносных ошибок и побочных эффектов. Проектирование человеческих эмбрионов также поднимает вопрос непростой перспективы «дизайна» детей, когда эмбрионы редактируются больше по социальным, чем по медицинским причинам; например, чтобы сделать человека выше или умнее

Однако такие черты могут контролироваться тысячами генов, большинство из которых ещё неизвестны. Поэтому на данный момент перспектива редактирования генома будущего потомства весьма отдалённая.

Как передаются наследственные заболевания?

Организм человека состоит из триллионов клеток. Каждая клетка имеет ядро, которое содержит хромосомы. Каждая хромосома состоит из плотно свернутых нитей дезоксирибонуклеиновой кислоты (ДНК).

Гены — это инструкции по сборке белков в нашем организме, которые определяют специфические черты каждого человека, например, цвет глаз или волос. Большинство клеток в организме обычно содержат 46 хромосом, организованных в 23 пары. В каждой из этих 23 пар есть одна унаследованная хромосома от отца и одна — от матери. Из 23 пар 22 пары одинаковые у женских и мужских организмов, а одна оставшаяся определяет, являетесь вы мужчиной (XY) или женщиной (XX).

Мутации, из-за которых возникают наследственные заболевания, могут иметь доминантный или рецессивный характер наследования.

Доминантное наследование означает, что только одна копия гена — от матери или отца — должна иметь мутацию (или патогенный вариант гена) для проявления признака или заболевания. А при рецессивном типе человек наследует две измененные копии одного и того же гена.

Аутосомно-доминантный паттерн наследования

При аутосомно-доминантном наследовании заболеваний генетически обусловленная болезнь проявляется в том случае, если у человека есть хотя бы один мутированный ген, и этот ген не расположен на половых (Х и Y) хромосомах.

Болезнь Хантингтона и синдром Марфана — два примера аутосомно-доминантных болезней. Мутации в генах BRCA1 и BRCA2, которые также связаны с раком молочной железы, передаются по этой схеме.

Аутосомно-рецессивный паттерн наследования

При аутосомно-рецессивном наследовании мутируют обе копии генов. Чтобы унаследовать аутосомно — рецессивное заболевание, такое как муковисцидоз, спинальная мышечная атрофия, или фенилкетонурия (ФКУ), оба родителя должны быть носителями. Ребенок наследует две копии дефектного гена — по одной от каждого родителя. Например, люди, имеющие одну копию гена с мутацией, а вторую — без мутации, называются носителями, потому что сами они здоровы.

Х-сцепленное рецессивное наследование

В Х-сцепленном рецессивном наследовании мутированный ген находится на Х-хромосоме. Болезнь проявляется только в случае, если другой Х-хромосомы с нормальной копией того же гена у человека нет.

Мышечная дистрофия Дюшенна, некоторые виды дальтонизма и гемофилия А — примеры рецессивных заболеваний, связанных с X-хромосомой. Мужчина с рецессивным заболеванием, связанным с X-хромосомой, передаст свою нетронутую Y-хромосому сыновьям, и ни один из них не пострадает. Если он передаст свою Х-хромосому (с дефектным геном) своим дочерям, то все они будут носителями болезни. У его дочерей может не быть симптомов или только легкие признаки заболевания, но они могут передать мутированный ген своим детям.

Женщины-носители рецессивного заболевания, связанного с X-хромосомой, часто имеют лёгкие признаки заболевания или вообще не имеют симптомов. Это связано с тем, что у женщин-носителей есть одна нормальная копия гена и одна мутированная копия. Нормальная копия обычно компенсирует дефектную копию в женском организме, в отличие от мужчин, у которых только одна X-хромосома.

Женщины, имеющие только один патологический ген, передают заболевание в среднем половине своих детей вне зависимости от пола. Женщины же, имеющие два патологических гена, передают заболевание всем своим детям. К таким заболеваниям относятся гемофилия А и дальтонизм.

Если вы знаете или предполагаете, что у вас или вашего партнера в семейной истории есть какое-либо генетическое заболевание, вы можете определить это с помощью Генетического теста Атлас. Генетическое консультирование поможет вам узнать о методах лечения, профилактических мерах и репродуктивных возможностях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector